FeNi-LDH nanoflakes on Co-encapsulated CNT networks for stable and efficient ampere-level current density oxygen evolution

Xian Wang, Ze Qin, Jinjie Qian, Liyu Chen, Kui Shen
{"title":"FeNi-LDH nanoflakes on Co-encapsulated CNT networks for stable and efficient ampere-level current density oxygen evolution","authors":"Xian Wang, Ze Qin, Jinjie Qian, Liyu Chen, Kui Shen","doi":"10.1016/j.apcatb.2024.124506","DOIUrl":null,"url":null,"abstract":"Developing low-cost but efficient electrocatalysts for continuous oxygen evolution reaction (OER) at ampere-level current densities can promote the hydrogen economy. LDHs are promising electrocatalysts to replace noble-metal-based catalysts for efficient OER, and rationally constructing LDH-based heterostructures can further boost their OER activities. Herein, we report the anchoring of FeNi-LDH nanoflakes onto MOF-derived carbon nanotube (CNT) networks on carbon cloth to obtain the self-supported LDH/CNT/CC. Benefiting from the advantages of its CNT network and the highly-active sites of its three-layer heterostructure, the optimized LDH/CNT/CC only requires a low overpotential of 200 mV at 10 mA cm and exhibits robust stability under continuous electrolysis for 160 h at an ampere-level current density of 1 A cm. Theoretical calculations show three-layer FeNi-LDH(001)/graphene(002)/Co(111) slab has the lowest OER energy barrier, and its graphene layer can gain electrons from the FeNi-LDH and Co to show the most suitable binding strength for intermediates to facilitate OER.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing low-cost but efficient electrocatalysts for continuous oxygen evolution reaction (OER) at ampere-level current densities can promote the hydrogen economy. LDHs are promising electrocatalysts to replace noble-metal-based catalysts for efficient OER, and rationally constructing LDH-based heterostructures can further boost their OER activities. Herein, we report the anchoring of FeNi-LDH nanoflakes onto MOF-derived carbon nanotube (CNT) networks on carbon cloth to obtain the self-supported LDH/CNT/CC. Benefiting from the advantages of its CNT network and the highly-active sites of its three-layer heterostructure, the optimized LDH/CNT/CC only requires a low overpotential of 200 mV at 10 mA cm and exhibits robust stability under continuous electrolysis for 160 h at an ampere-level current density of 1 A cm. Theoretical calculations show three-layer FeNi-LDH(001)/graphene(002)/Co(111) slab has the lowest OER energy barrier, and its graphene layer can gain electrons from the FeNi-LDH and Co to show the most suitable binding strength for intermediates to facilitate OER.
共封装 CNT 网络上的 FeNi-LDH 纳米片,用于实现稳定高效的安培级电流密度氧演化
开发低成本但高效的电催化剂,用于安培级电流密度的连续氧进化反应(OER),可以促进氢经济的发展。基于 LDH 的异质结构可进一步提高其 OER 活性。在此,我们报告了将 FeNi-LDH 纳米片锚定到碳布上的 MOF 衍生碳纳米管(CNT)网络上,从而获得自支撑 LDH/CNT/CC。得益于碳纳米管网络的优势和三层异质结构的高活性位点,优化后的 LDH/CNT/CC 在 10 mA cm 的条件下只需 200 mV 的低过电位,并在 1 A cm 的安培级电流密度下连续电解 160 小时,表现出极强的稳定性。理论计算表明,三层 FeNi-LDH(001)/graphene(002)/Co(111) 板具有最低的 OER 能量势垒,其石墨烯层可以从 FeNi-LDH 和 Co 中获得电子,从而显示出最合适的中间体结合强度,促进 OER。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信