Big Data最新文献

筛选
英文 中文
Classification and Detection of Cyanosis Images on Lightly and Darkly Pigmented Individual Human Skins using a Fine-Tuned MobileNet Architecture 使用微调的MobileNet架构对浅色和深色个体皮肤上的紫绀图像进行分类和检测
IF 4.6 4区 计算机科学
Big Data Pub Date : 2023-08-03 DOI: 10.1109/icABCD59051.2023.10220464
Lukoki Mpova, T. Shongwe, Ali N. Hasan
{"title":"Classification and Detection of Cyanosis Images on Lightly and Darkly Pigmented Individual Human Skins using a Fine-Tuned MobileNet Architecture","authors":"Lukoki Mpova, T. Shongwe, Ali N. Hasan","doi":"10.1109/icABCD59051.2023.10220464","DOIUrl":"https://doi.org/10.1109/icABCD59051.2023.10220464","url":null,"abstract":"The classification and detection of cyanosis using in-vivo and in-silico image processing approaches are intriguing and very special. In this study, a peripheral and central cyanosis image classification approach, using lightweight-deep learning Convolutional Neural Networks (CNNs), referred to as pre-trained MobileNet architecture, was introduced. This modified MobileNet model was assessed using the sanctioned dataset of 1300-image collected from multiple cyanosis published datasets. The augmentation technique was applied on the training dataset to enrich the productivity. Emphatic results, validation-accuracy and accuracies on the training and test datasets of 95% and 97%, respectively; were obtained as compared to the validation-accuracy of 79% and 82% of the Simple Convolutional Neural Networks (SCNNs) and Fine-tuned VGG16 models attained from prior stud.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82493027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Realizing the Potential of Stratosphere Utilization via Stratosphere Data Centers 通过平流层数据中心实现平流层利用的潜力
IF 4.6 4区 计算机科学
Big Data Pub Date : 2023-08-03 DOI: 10.1109/icABCD59051.2023.10220520
A. Periola, K. Ogudo, A. Alonge
{"title":"Realizing the Potential of Stratosphere Utilization via Stratosphere Data Centers","authors":"A. Periola, K. Ogudo, A. Alonge","doi":"10.1109/icABCD59051.2023.10220520","DOIUrl":"https://doi.org/10.1109/icABCD59051.2023.10220520","url":null,"abstract":"The stratosphere is an aeronautical resource whose use is of benefit to the government in delivering aviation services. It also provides a freely cooling environment making it suitable for hosting non-terrestrial data centers. However, the development of a framework enabling the utilization of the stratosphere requires further research attention. The research presents a multientity architecture that describes the role of a stratosphere-bound airport that supports the deployment and use of future stratosphere-based data centers. The solution being presented is intended to increase the operational duration of future deployed stratosphere-based data centers. The focus here is on enhancing the operational duration of the stratosphere-based data center. This is important for its role in future networks. Analysis shows that the proposed solution improved the operational duration by at least 33% and by up to 76% on average.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80701322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Analysis of a Light Weight Ground Robotic Vehicle by Implementing Adaptive Neuro-Fuzzy Inference System (ANFIS) 基于自适应神经模糊推理系统(ANFIS)的轻型地面机器人车辆性能分析
IF 4.6 4区 计算机科学
Big Data Pub Date : 2023-08-03 DOI: 10.1109/icABCD59051.2023.10220494
M. Okwu, I. Emovon, O. J. Oyejide, Kingsley C. Ezekiel, Olaye Messiah, Perpetua C. Jones-Iwuagwu
{"title":"Performance Analysis of a Light Weight Ground Robotic Vehicle by Implementing Adaptive Neuro-Fuzzy Inference System (ANFIS)","authors":"M. Okwu, I. Emovon, O. J. Oyejide, Kingsley C. Ezekiel, Olaye Messiah, Perpetua C. Jones-Iwuagwu","doi":"10.1109/icABCD59051.2023.10220494","DOIUrl":"https://doi.org/10.1109/icABCD59051.2023.10220494","url":null,"abstract":"Automated Guided Vehicles (AGVs) are widely used as delivery agents and for material transportation in factories, hospital environment, and other facilities. Conducting performance tests on AGVs has the potential to ratify and improve the efficiency, and reliability of the system. However, published studies on performance analysis focused on classical metrics for such evaluation. In this study, the emphasis is on the performance evaluation of a developed lightweight AGV using the Adaptive Neuro-fuzzy Inference System (ANFIS). The developed line following AGV is flexible, intelligent, and nifty, and can be accessed wirelessly, and controlled by an operator. It was programmed to avoid collision with the help of a proximity sensor attached. The performance test was conducted by drawing black lines on a plain surface for easy navigation of the AGV. A series of experiments was carried out by using realistic test variables like the navigation pattern of AGV, test accuracy, energy efficiency, obstacle avoidance, task accomplishment, and others. Sensitivity analysis was done using the ANFIS surface plot. The total system intelligence (TSI) obtained for the different trials are 76%; 79%; 80%; 81%; 79% and 81 %, for the first, second, third, fourth, fifth, and final trials respectively. The preeminent observable performance was the fourth and sixth trials, obtained at 81 %. The outcome of the investigation reveals that the ANFIS model is an efficient soft computing technique capable of performing TSI tests of AGVs with a high degree of accuracy. The model is also recommended in AGV platooning.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85157357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence and State Power 人工智能与国家权力
IF 4.6 4区 计算机科学
Big Data Pub Date : 2023-08-03 DOI: 10.1109/icABCD59051.2023.10220459
V. Maphosa
{"title":"Artificial Intelligence and State Power","authors":"V. Maphosa","doi":"10.1109/icABCD59051.2023.10220459","DOIUrl":"https://doi.org/10.1109/icABCD59051.2023.10220459","url":null,"abstract":"Artificial Intelligence (AI) is increasingly ubiquitous, transforming our everyday lives. AI is expected to improve human life amid growing concerns that unregulated AI could lead to disastrous outcomes. AI algorithms have become complex and more challenging to follow. The disruptive nature of AI is seen in state power through surveillance, facial recognition, and deployment of lethal autonomous weapons systems by superpowers. This review paper analyses how AI is deployed for state power to enhance policing and military operations. AI deployment by the police and army increases operational excellence and efficiency and offers simulated training, and predictive capabilities, while unregulated use raises ethical and human rights violations. Given the foreseeable pervasiveness and rapid AI development, more research is required to restrict coercive state power. This review paper raises awareness of AI's affordances and contributes to emergent literature on constraints and ethical and legal issues. It raises interest among scholars, policymakers, and practitioners for collaborative research. AI will reinforce the technology divide as developing countries face infrastructural, financial and digital skills barriers. The review concludes with future research implications.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78064363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant Disease Detection using Vision Transformers on Multispectral Natural Environment Images 基于多光谱自然环境图像的视觉变换植物病害检测
IF 4.6 4区 计算机科学
Big Data Pub Date : 2023-08-03 DOI: 10.1109/icABCD59051.2023.10220517
Malithi De Silva, Dane Brown
{"title":"Plant Disease Detection using Vision Transformers on Multispectral Natural Environment Images","authors":"Malithi De Silva, Dane Brown","doi":"10.1109/icABCD59051.2023.10220517","DOIUrl":"https://doi.org/10.1109/icABCD59051.2023.10220517","url":null,"abstract":"Enhancing agricultural practices has become essential in mitigating global hunger. Over the years, significant technological advancements have been introduced to improve the quality and quantity of harvests by effectively managing weeds, pests, and diseases. Many studies have focused on identifying plant diseases, as this information aids in making informed decisions about applying fungicides and fertilizers. Advanced systems often employ a combination of image processing and deep learning techniques to identify diseases based on visible symptoms. However, these systems typically rely on pre-existing datasets or images captured in controlled environments. This study showcases the efficacy of utilizing multispectral images captured in visible and Near Infrared (NIR) ranges for identifying plant diseases in real-world environmental conditions. The collected datasets were classified using popular Vision Transformer (ViT) models, including ViT- S16, ViT-BI6, ViT-LI6 and ViT-B32. The results showed impressive training and test accuracies for all the data collected using diverse Kolari vision lenses with 93.71 % and 90.02 %, respectively. This work highlights the potential of utilizing advanced imaging techniques for accurate and reliable plant disease identification in practical field conditions.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75417788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Identification and classification of Green Leafy Vegetables using CNN models 基于CNN模型的绿叶蔬菜识别与分类
IF 4.6 4区 计算机科学
Big Data Pub Date : 2023-08-03 DOI: 10.1109/icABCD59051.2023.10220482
Eneia Filipe Vilanculos, T. Shongwe, Ali N. Hasan
{"title":"Identification and classification of Green Leafy Vegetables using CNN models","authors":"Eneia Filipe Vilanculos, T. Shongwe, Ali N. Hasan","doi":"10.1109/icABCD59051.2023.10220482","DOIUrl":"https://doi.org/10.1109/icABCD59051.2023.10220482","url":null,"abstract":"Identifying and classifying vegetables in big farms is a challenge, especially when the vegetables are similar in colour and shape. Manual identification of vegetables takes time and is prone to errors. Therefore, the automatic classification process of the precision farming, increasingly using image processing and pattern recognition to identify fruits and vegetable, is becoming essential to identify and classify vegetables in big farms. In this paper, an automatic system for the identification and classification of green leafy vegetables, similar in colour and shape was evaluataed using five different deep learning models such as CNN, MobileNet, VGG-16, Inception V3 and ResNet 50. The accuracies of these models achieved in this paper vary from 67% to 99%. The model with the highest accuracy is the MobileNet.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72376715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Resources Allocation Scheme For Joint Optical Wireless Transport Networks 一种联合无线光传输网络的资源分配方案
IF 4.6 4区 计算机科学
Big Data Pub Date : 2023-08-03 DOI: 10.1109/icABCD59051.2023.10220537
Mlungisi Molefe, K. Sibiya, B. Nleya
{"title":"A Resources Allocation Scheme For Joint Optical Wireless Transport Networks","authors":"Mlungisi Molefe, K. Sibiya, B. Nleya","doi":"10.1109/icABCD59051.2023.10220537","DOIUrl":"https://doi.org/10.1109/icABCD59051.2023.10220537","url":null,"abstract":"As the future of networking dives into a new era of connecting every single physical device into the internet termed Internet of Things (loT), this significantly means a rapid increase in the number of online connected devices, which leads to more bandwidth hungry and data consuming devices. The fifth generation (5G) of mobile communication has been deployed already in multiple countries, therefore researchers have migrated their focus to the sixth generation (6G) of mobile communication to cater for extensive coverage and massive number of loT devices. A promising architecture and technology to cope with massive number of online devices and extensive coverage is a joint optical wireless transport network which offers comparably ultra-high systems capacity and extremely low latency while maintaining an improved quality of service. Furthermore, an optical wireless transport network can accommodate high speed mobility for frequently moving end user devices which is essential for 6G. In this paper our focus is to explore and propose an ultimate optical wireless transport network architecture scheme that will cater for loT as well as networks beyond 5G. We thus propose an innovative Optical-Backhaul and Wireless Access (OBWA) network architecture as a favorable solution for future networks. We further present a joint channel and route allocation (JCRA) scheme for achieving optimal quality of experience. Performance evaluation of the proposed JCRA scheme for OBW A network architecture show a significant improvement in the network throughput as well as the network end-to-end delay despite varying load traffic or varying flow channels.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84572092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real- Time Detecting and Tracking of Squids Using YOLOv5 基于YOLOv5的鱿鱼实时检测与跟踪
IF 4.6 4区 计算机科学
Big Data Pub Date : 2023-08-03 DOI: 10.1109/icABCD59051.2023.10220521
Luxolo Kuhlane, Dane Brown, Marc Marais
{"title":"Real- Time Detecting and Tracking of Squids Using YOLOv5","authors":"Luxolo Kuhlane, Dane Brown, Marc Marais","doi":"10.1109/icABCD59051.2023.10220521","DOIUrl":"https://doi.org/10.1109/icABCD59051.2023.10220521","url":null,"abstract":"This paper proposes a real-time system for detecting and tracking squids using the YOLOv5 object detection algorithm. The system utilizes a large dataset of annotated squid images and videos to train a YOLOv5 model optimized for detecting and tracking squids. The model is fine-tuned to minimize false positives and optimize detection accuracy. The system is deployed on a GPU-enabled device for real-time processing of video streams and tracking of detected squids across frames. The accuracy and speed of the system make it a valuable tool for marine scientists, conservationists, and fishermen to better understand the behavior and distribution of these elusive creatures. Future work includes incorporating additional computer vision techniques and sensor data to improve tracking accuracy and robustness.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82658312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disease Motivated Model for Future Dynamic Computing 未来动态计算的疾病驱动模型
IF 4.6 4区 计算机科学
Big Data Pub Date : 2023-08-03 DOI: 10.1109/icABCD59051.2023.10220487
Dephney Mathebula
{"title":"Disease Motivated Model for Future Dynamic Computing","authors":"Dephney Mathebula","doi":"10.1109/icABCD59051.2023.10220487","DOIUrl":"https://doi.org/10.1109/icABCD59051.2023.10220487","url":null,"abstract":"Future computing entities should be capable of accessing computing resources for data-intensive algorithm execution. This should be realizable in operational contexts where internet accessibility to cloud contexts becomes challenging. Such a scenario describes developing contexts. In addition, future computing entities also make use of multiple operating systems in a context where the computing resources are reduced due to the use of partitions. The use of partitions is recognized to reduce the number of accessible computing resources and increase the overhead associated with computing resource allocation. The presented research proposes an architecture where an operating system is logically stowed and selectively activated without involving the use of partition. This frees up the number of computing resources previously locked in different partition systems and reduces the computing resource overhead. Analysis shows that the proposed framework increases the accessible computing resources by 14.6% on average. In addition, the computing resource overhead is reduced by 21 % on average.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89283720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Network Management with Software Defined Networking using OpenFlow Protocol 使用OpenFlow协议改进软件定义网络的网络管理
IF 4.6 4区 计算机科学
Big Data Pub Date : 2023-08-03 DOI: 10.1109/icABCD59051.2023.10220519
Koketso Molemane Rodney Mokoena, Ramahlapane Lerato Moila, Prof Mthulisi Velempini
{"title":"Improving Network Management with Software Defined Networking using OpenFlow Protocol","authors":"Koketso Molemane Rodney Mokoena, Ramahlapane Lerato Moila, Prof Mthulisi Velempini","doi":"10.1109/icABCD59051.2023.10220519","DOIUrl":"https://doi.org/10.1109/icABCD59051.2023.10220519","url":null,"abstract":"With the advancement of network-based devices, resulting in communication networks also growing rapidly and becoming more complex, resulting in large and heterogeneous network architecture has brought a lot of challenges in network management. Therefore, managing the network has become an increasingly a challenge given the existing network architectures. In this study, we have investigated how network operators operate, maintain and secure telecommunications networks. The study has also investigated the effectiveness of Software Defined Networking (SDN) in improving network management. The study has also investigated how the architecture minimizes the challenges users face. To improve network management with SDN using the OpenFlow protocol, we created network topologies and configured devices using the graphical network simulator 3, Oracle VM VirtualBox Manager, and Mininet VM. Our approach implemented both Git and Ansible in a centralized network architecture to solve the problems facing existing network architectures with the rapid growth of network-based devices on the Internet. This research paper has shown how to use Ansible playbooks to manage your network and overcome the challenges you face. The simulation results shows that the proposed scheme performs better in terms of efficiency and flexibility than the traditional OpenFlow protocol. These improvements have been achieved through the separation of the control and data planes, allowing for more centralized network management and easier implementation of network policies.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87963992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信