Aisha Batool, Muhammad Wasif Nisar, Jamal Hussain Shah, Muhammad Attique Khan, Ahmed A Abd El-Latif
{"title":"iELMNet: Integrating Novel Improved Extreme Learning Machine and Convolutional Neural Network Model for Traffic Sign Detection.","authors":"Aisha Batool, Muhammad Wasif Nisar, Jamal Hussain Shah, Muhammad Attique Khan, Ahmed A Abd El-Latif","doi":"10.1089/big.2021.0279","DOIUrl":null,"url":null,"abstract":"<p><p>Traffic sign detection (TSD) in real-time environment holds great importance for applications such as automated-driven vehicles. Large variety of traffic signs, different appearances, and spatial representations causes a huge intraclass variation. In this article, an extreme learning machine (ELM), convolutional neural network (CNN), and scale transformation (ST)-based model, called improved extreme learning machine network, are proposed to detect traffic signs in real-time environment. The proposed model has a custom DenseNet-based novel CNN architecture, improved version of region proposal networks called accurate anchor prediction model (A2PM), ST, and ELM module. CNN architecture makes use of handcrafted features such as scale-invariant feature transform and Gabor to improvise the edges of traffic signs. The A2PM minimizes the redundancy among extracted features to make the model efficient and ST enables the model to detect traffic signs of different sizes. ELM module enhances the efficiency by reshaping the features. The proposed model is tested on three publicly available data sets, challenging unreal and real environments for traffic sign recognition, Tsinghua-Tencent 100K, and German traffic sign detection benchmark and achieves average precisions of 93.31%, 95.22%, and 99.45%, respectively. These results prove that the proposed model is more efficient than state-of-the-art sign detection techniques.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2021.0279","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4
Abstract
Traffic sign detection (TSD) in real-time environment holds great importance for applications such as automated-driven vehicles. Large variety of traffic signs, different appearances, and spatial representations causes a huge intraclass variation. In this article, an extreme learning machine (ELM), convolutional neural network (CNN), and scale transformation (ST)-based model, called improved extreme learning machine network, are proposed to detect traffic signs in real-time environment. The proposed model has a custom DenseNet-based novel CNN architecture, improved version of region proposal networks called accurate anchor prediction model (A2PM), ST, and ELM module. CNN architecture makes use of handcrafted features such as scale-invariant feature transform and Gabor to improvise the edges of traffic signs. The A2PM minimizes the redundancy among extracted features to make the model efficient and ST enables the model to detect traffic signs of different sizes. ELM module enhances the efficiency by reshaping the features. The proposed model is tested on three publicly available data sets, challenging unreal and real environments for traffic sign recognition, Tsinghua-Tencent 100K, and German traffic sign detection benchmark and achieves average precisions of 93.31%, 95.22%, and 99.45%, respectively. These results prove that the proposed model is more efficient than state-of-the-art sign detection techniques.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.