Afzal Badshah, Ateeqa Jalal, Umar Farooq, Ghani-Ur Rehman, Shahab S Band, Celestine Iwendi
{"title":"Service Level Agreement Monitoring as a Service: An Independent Monitoring Service for Service Level Agreements in Clouds.","authors":"Afzal Badshah, Ateeqa Jalal, Umar Farooq, Ghani-Ur Rehman, Shahab S Band, Celestine Iwendi","doi":"10.1089/big.2021.0274","DOIUrl":null,"url":null,"abstract":"<p><p>The cloud network is rapidly growing due to a massive increase in interconnected devices and the emergence of different technologies such as the Internet of things, fog computing, and artificial intelligence. In response, cloud computing needs reliable dealings among the service providers, brokers, and consumers. The existing cloud monitoring frameworks such as Amazon Cloud Watch, Paraleap Azure Watch, and Rack Space Cloud Kick work under the control of service providers. They work fine; however, this may create dissatisfaction among customers over Service Level Agreement (SLA) violations. Customers' dissatisfaction may drastically reduce the businesses of service providers. To cope with the earlier mentioned issue and get in line with cloud philosophy, Monitoring as a Service (MaaS), completely independent in nature, is needed for observing and regulating the cloud businesses. However, the existing MaaS frameworks do not address the comprehensive SLA for customer satisfaction and penalties management. This article proposes a reliable framework for monitoring the provider's services by adopting third-party monitoring services with clearcut SLA and penalties management. Since this framework monitors SLA as a cloud monitoring service, it is named as SLA-MaaS. On violations, it penalizes those who are found in breach of terms and condition enlisted in SLA. Simulation results confirmed that the proposed framework adequately satisfies the customers (as well as service providers). This helps in developing a trustworthy relationship among cloud partners and increases customer attention and retention.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"339-354"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2021.0274","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 6
Abstract
The cloud network is rapidly growing due to a massive increase in interconnected devices and the emergence of different technologies such as the Internet of things, fog computing, and artificial intelligence. In response, cloud computing needs reliable dealings among the service providers, brokers, and consumers. The existing cloud monitoring frameworks such as Amazon Cloud Watch, Paraleap Azure Watch, and Rack Space Cloud Kick work under the control of service providers. They work fine; however, this may create dissatisfaction among customers over Service Level Agreement (SLA) violations. Customers' dissatisfaction may drastically reduce the businesses of service providers. To cope with the earlier mentioned issue and get in line with cloud philosophy, Monitoring as a Service (MaaS), completely independent in nature, is needed for observing and regulating the cloud businesses. However, the existing MaaS frameworks do not address the comprehensive SLA for customer satisfaction and penalties management. This article proposes a reliable framework for monitoring the provider's services by adopting third-party monitoring services with clearcut SLA and penalties management. Since this framework monitors SLA as a cloud monitoring service, it is named as SLA-MaaS. On violations, it penalizes those who are found in breach of terms and condition enlisted in SLA. Simulation results confirmed that the proposed framework adequately satisfies the customers (as well as service providers). This helps in developing a trustworthy relationship among cloud partners and increases customer attention and retention.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.