Big Data最新文献

筛选
英文 中文
Automated Natural Language Processing-Based Supplier Discovery for Financial Services. 基于自然语言处理的金融服务供应商自动发现。
IF 4.6 4区 计算机科学
Big Data Pub Date : 2024-02-01 Epub Date: 2023-07-07 DOI: 10.1089/big.2022.0215
Mauro Papa, Ioannis Chatzigiannakis, Aris Anagnostopoulos
{"title":"Automated Natural Language Processing-Based Supplier Discovery for Financial Services.","authors":"Mauro Papa, Ioannis Chatzigiannakis, Aris Anagnostopoulos","doi":"10.1089/big.2022.0215","DOIUrl":"10.1089/big.2022.0215","url":null,"abstract":"<p><p>Public procurement is viewed as a major market force that can be used to promote innovation and drive small and medium-sized enterprises growth. In such cases, procurement system design relies on intermediates that provide vertical linkages between suppliers and providers of innovative services and products. In this work we propose an innovative methodology for decision support in the process of supplier discovery, which precedes the final supplier selection. We focus on data gathered from community-based sources such as Reddit and Wikidata and avoid any use of historical open procurement datasets to identify small and medium sized suppliers of innovative products and services that own very little market shares. We look into a real-world procurement case study from the financial sector focusing on the Financial and Market Data offering and develop an interactive web-based support tool to address certain requirements of the Italian central bank. We demonstrate how a suitable selection of natural language processing models, such as a part-of-speech tagger and a word-embedding model, in combination with a novel named-entity-disambiguation algorithm, can efficiently analyze huge quantity of textual data, increasing the probability of a full coverage of the market.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9749953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Cooperative Innovation on the Technological Innovation Performance of High-Tech Firms: A Dual Moderating Effect Model of Big Data Capabilities and Policy Support. 合作创新对高科技企业技术创新绩效的影响:大数据能力与政策支持的双重调节效应模型。
IF 4.6 4区 计算机科学
Big Data Pub Date : 2024-02-01 Epub Date: 2023-09-14 DOI: 10.1089/big.2022.0301
Xianglong Li, Qingjin Wang, Renbo Shi, Xueling Wang, Kaiyun Zhang, Xiao Liu
{"title":"Impact of Cooperative Innovation on the Technological Innovation Performance of High-Tech Firms: A Dual Moderating Effect Model of Big Data Capabilities and Policy Support.","authors":"Xianglong Li, Qingjin Wang, Renbo Shi, Xueling Wang, Kaiyun Zhang, Xiao Liu","doi":"10.1089/big.2022.0301","DOIUrl":"10.1089/big.2022.0301","url":null,"abstract":"<p><p>The mechanism of cooperative innovation (CI) for high-tech firms aims to improve their technological innovation performance. It is the effective integration of the internal and external innovation resources of these firms, along with the simultaneous reduction in the uncertainty of technological innovation and the maintenance of the comparative advantage of the firms in the competition. This study used 322 high-tech firms as our sample, which were located in 33 national innovation demonstration bases identified by the Chinese government. We implemented a multiple linear regression to test the impact of CI conducted by these high-tech firms at the level of their technological innovation performance. In addition, the study further examined the moderating effect of two boundary conditions-big data capabilities and policy support (PS)-on the main hypotheses. Our study found that high-tech firms carrying out CI can effectively improve their technological innovation performance, with big data capabilities and PS significantly enhancing the degree of this influence. The study reveals the intrinsic mechanism of the impact of CI on the technological innovation performance of high-tech firms, which, to a certain extent, expands the application context of CI and enriches the research perspective on the impact of CI on the innovation performance of firms. At the same time, the findings provide insight for how high-tech firms in the digital era can make reasonable use of data empowerment in the process of CI to achieve improved technological innovation performance.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10243508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A MapReduce-Based Approach for Fast Connected Components Detection from Large-Scale Networks. 基于 MapReduce 的大规模网络连接组件快速检测方法。
IF 4.6 4区 计算机科学
Big Data Pub Date : 2024-01-29 DOI: 10.1089/big.2022.0264
Sajid Yousuf Bhat, Muhammad Abulaish
{"title":"A MapReduce-Based Approach for Fast Connected Components Detection from Large-Scale Networks.","authors":"Sajid Yousuf Bhat, Muhammad Abulaish","doi":"10.1089/big.2022.0264","DOIUrl":"https://doi.org/10.1089/big.2022.0264","url":null,"abstract":"<p><p>Owing to increasing size of the real-world networks, their processing using classical techniques has become infeasible. The amount of storage and central processing unit time required for processing large networks is far beyond the capabilities of a high-end computing machine. Moreover, real-world network data are generally distributed in nature because they are collected and stored on distributed platforms. This has popularized the use of the MapReduce, a distributed data processing framework, for analyzing real-world network data. Existing MapReduce-based methods for connected components detection mainly struggle to minimize the number of MapReduce rounds and the amount of data generated and forwarded to the subsequent rounds. This article presents an efficient MapReduce-based approach for finding connected components, which does not forward the complete set of connected components to the subsequent rounds; instead, it writes them to the Hadoop Distributed File System as soon as they are found to reduce the amount of data forwarded to the subsequent rounds. It also presents an application of the proposed method in contact tracing. The proposed method is evaluated on several network data sets and compared with two state-of-the-art methods. The empirical results reveal that the proposed method performs significantly better and is scalable to find connected components in large-scale networks.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139571864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of Machine Learning-Based Extreme Value Theory in Stock Investment Risk Prediction: A Systematic Literature Review. 基于机器学习的极值理论在股票投资风险预测中的建模:系统性文献综述。
IF 4.6 4区 计算机科学
Big Data Pub Date : 2024-01-17 DOI: 10.1089/big.2023.0004
Melina Melina, Sukono, Herlina Napitupulu, Norizan Mohamed
{"title":"Modeling of Machine Learning-Based Extreme Value Theory in Stock Investment Risk Prediction: A Systematic Literature Review.","authors":"Melina Melina, Sukono, Herlina Napitupulu, Norizan Mohamed","doi":"10.1089/big.2023.0004","DOIUrl":"https://doi.org/10.1089/big.2023.0004","url":null,"abstract":"<p><p>The stock market is heavily influenced by global sentiment, which is full of uncertainty and is characterized by extreme values and linear and nonlinear variables. High-frequency data generally refer to data that are collected at a very fast rate based on days, hours, minutes, and even seconds. Stock prices fluctuate rapidly and even at extremes along with changes in the variables that affect stock fluctuations. Research on investment risk estimation in the stock market that can identify extreme values is nonlinear, reliable in multivariate cases, and uses high-frequency data that are very important. The extreme value theory (EVT) approach can detect extreme values. This method is reliable in univariate cases and very complicated in multivariate cases. The purpose of this research was to collect, characterize, and analyze the investment risk estimation literature to identify research gaps. The literature used was selected by applying the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and sourced from Sciencedirect.com and Scopus databases. A total of 1107 articles were produced from the search at the identification stage, reduced to 236 in the eligibility stage, and 90 articles in the included studies set. The bibliometric networks were visualized using the VOSviewer software, and the main keyword used as the search criteria is \"VaR.\" The visualization showed that EVT, the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models, and historical simulation are models often used to estimate the investment risk; the application of the machine learning (ML)-based investment risk estimation model is low. There has been no research using a combination of EVT and ML to estimate the investment risk. The results showed that the hybrid model produced better Value-at-Risk (VaR) accuracy under uncertainty and nonlinear conditions. Generally, models only use daily return data as model input. Based on research gaps, a hybrid model framework for estimating risk measures is proposed using a combination of EVT and ML, using multivariable and high-frequency data to identify extreme values in the distribution of data. The goal is to produce an accurate and flexible estimated risk value against extreme changes and shocks in the stock market. Mathematics Subject Classification: 60G25; 62M20; 6245; 62P05; 91G70.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139486846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Big Data Analytics on Decision-Making Within the Government Sector. 大数据分析对政府部门决策的影响。
IF 4.6 4区 计算机科学
Big Data Pub Date : 2024-01-09 DOI: 10.1089/big.2023.0019
Laila Faridoon, Wei Liu, Crawford Spence
{"title":"The Impact of Big Data Analytics on Decision-Making Within the Government Sector.","authors":"Laila Faridoon, Wei Liu, Crawford Spence","doi":"10.1089/big.2023.0019","DOIUrl":"https://doi.org/10.1089/big.2023.0019","url":null,"abstract":"<p><p>The government sector has started adopting big data analytics capability (BDAC) to enhance its service delivery. This study examines the relationship between BDAC and decision-making capability (DMC) in the government sector. It investigates the mediation role of the cognitive style of decision makers and organizational culture in the relationship between BDAC and DMC utilizing the resource-based view of the firm theory. It further investigates the impact of BDAC on organizational performance (OP). This study attempts to extend existing research through significant findings and recommendations to enhance decision-making processes for a successful utilization of BDAC in the government sector. A survey method was adopted to collect data from government organizations in the United Arab Emirates, and partial least-squares structural equation modeling was deployed to analyze the collected data. The results empirically validate the proposed theoretical framework and confirm that BDAC positively impacts DMC via cognitive style and organizational culture, and in turn further positively impacting OP overall.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139405170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-Scale Estimation and Analysis of Web Users' Mood from Web Search Query and Mobile Sensor Data. 从网络搜索查询和移动传感器数据中大规模估计和分析网络用户的情绪。
IF 2.6 4区 计算机科学
Big Data Pub Date : 2024-01-01 Epub Date: 2023-06-02 DOI: 10.1089/big.2022.0211
Wataru Sasaki, Satoki Hamanaka, Satoko Miyahara, Kota Tsubouchi, Jin Nakazawa, Tadashi Okoshi
{"title":"Large-Scale Estimation and Analysis of Web Users' Mood from Web Search Query and Mobile Sensor Data.","authors":"Wataru Sasaki, Satoki Hamanaka, Satoko Miyahara, Kota Tsubouchi, Jin Nakazawa, Tadashi Okoshi","doi":"10.1089/big.2022.0211","DOIUrl":"10.1089/big.2022.0211","url":null,"abstract":"<p><p>The ability to estimate the current mood states of web users has considerable potential for realizing user-centric opportune services in pervasive computing. However, it is difficult to determine the data type used for such estimation and collect the ground truth of such mood states. Therefore, we built a model to estimate the mood states from search-query data in an easy-to-collect and non-invasive manner. Then, we built a model to estimate mood states from mobile sensor data as another estimation model and supplemented its output to the ground-truth label of the model estimated from search queries. This novel two-step model building contributed to boosting the performance of estimating the mood states of web users. Our system was also deployed in the commercial stack, and large-scale data analysis with >11 million users was conducted. We proposed a nationwide mood score, which bundles the mood values of users across the country. It shows the daily and weekly rhythm of people's moods and explains the ups and downs of moods during the COVID-19 pandemic, which is inversely synchronized to the number of new COVID-19 cases. It detects big news that simultaneously affects the mood states of many users, even under fine-grained time resolution, such as the order of hours. In addition, we identified a certain class of advertisements that indicated a clear tendency in the mood of the users who clicked such advertisements.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9565593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Efficient Approximations of the Concordance Probability in a Big Data Setting. 大数据环境下一致概率的高效计算近似。
IF 2.6 4区 计算机科学
Big Data Pub Date : 2024-01-01 Epub Date: 2023-06-07 DOI: 10.1089/big.2022.0107
Robin Van Oirbeek, Jolien Ponnet, Bart Baesens, Tim Verdonck
{"title":"Computational Efficient Approximations of the Concordance Probability in a Big Data Setting.","authors":"Robin Van Oirbeek, Jolien Ponnet, Bart Baesens, Tim Verdonck","doi":"10.1089/big.2022.0107","DOIUrl":"10.1089/big.2022.0107","url":null,"abstract":"<p><p>Performance measurement is an essential task once a statistical model is created. The area under the receiving operating characteristics curve (AUC) is the most popular measure for evaluating the quality of a binary classifier. In this case, the AUC is equal to the concordance probability, a frequently used measure to evaluate the discriminatory power of the model. Contrary to AUC, the concordance probability can also be extended to the situation with a continuous response variable. Due to the staggering size of data sets nowadays, determining this discriminatory measure requires a tremendous amount of costly computations and is hence immensely time consuming, certainly in case of a continuous response variable. Therefore, we propose two estimation methods that calculate the concordance probability in a fast and accurate way and that can be applied to both the discrete and continuous setting. Extensive simulation studies show the excellent performance and fast computing times of both estimators. Finally, experiments on two real-life data sets confirm the conclusions of the artificial simulations.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9592435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small Files Problem Resolution via Hierarchical Clustering Algorithm. 通过分层聚类算法解决小文件问题
IF 2.6 4区 计算机科学
Big Data Pub Date : 2024-01-01 Epub Date: 2023-05-16 DOI: 10.1089/big.2022.0181
Oded Koren, Aviel Shamalov, Nir Perel
{"title":"Small Files Problem Resolution via Hierarchical Clustering Algorithm.","authors":"Oded Koren, Aviel Shamalov, Nir Perel","doi":"10.1089/big.2022.0181","DOIUrl":"10.1089/big.2022.0181","url":null,"abstract":"<p><p>The Small Files Problem in Hadoop Distributed File System (HDFS) is an ongoing challenge that has not yet been solved. However, various approaches have been developed to tackle the obstacles this problem creates. Properly managing the size of blocks in a file system is essential as it saves memory and computing time and may reduce bottlenecks. In this article, a new approach using a Hierarchical Clustering Algorithm is suggested for dealing with small files. The proposed method identifies the files by their structure and via a special Dendrogram analysis, and then recommends which files can be merged. As a simulation, the proposed algorithm was applied via 100 CSV files with different structures, containing 2-4 columns with different data types (integer, decimal and text). Also, 20 files that were not CSV files were created to demonstrate that the algorithm only works on CSV files. All data were analyzed via a machine learning hierarchical clustering method, and a Dendrogram was created. According to the merge process that was performed, seven files from the Dendrogram analysis were chosen as appropriate files to be merged. This reduced the memory space in the HDFS. Furthermore, the results showed that using the suggested algorithm led to efficient file management.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9830746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting Sociodemographic Attributes from Mobile Usage Patterns: Applications and Privacy Implications. 从移动使用模式预测社会人口属性:应用与隐私影响
IF 2.6 4区 计算机科学
Big Data Pub Date : 2024-01-01 Epub Date: 2023-08-14 DOI: 10.1089/big.2022.0182
Rouzbeh Razavi, Guisen Xue, Ikpe Justice Akpan
{"title":"Predicting Sociodemographic Attributes from Mobile Usage Patterns: Applications and Privacy Implications.","authors":"Rouzbeh Razavi, Guisen Xue, Ikpe Justice Akpan","doi":"10.1089/big.2022.0182","DOIUrl":"10.1089/big.2022.0182","url":null,"abstract":"<p><p>When users interact with their mobile devices, they leave behind unique digital footprints that can be viewed as predictive proxies that reveal an array of users' characteristics, including their demographics. Predicting users' demographics based on mobile usage can provide significant benefits for service providers and users, including improving customer targeting, service personalization, and market research efforts. This study uses machine learning algorithms and mobile usage data from 235 demographically diverse users to examine the accuracy of predicting their sociodemographic attributes (age, gender, income, and education) from mobile usage metadata, filling the gap in the current literature by quantifying the predictive power of each attribute and discussing the practical applications and privacy implications. According to the results, gender can be most accurately predicted (balanced accuracy = 0.862) from mobile usage footprints, whereas predicting users' education level is more challenging (balanced accuracy = 0.719). Moreover, the classification models were able to classify users based on whether their age or income was above or below a certain threshold with acceptable accuracy. The study also presents the practical applications of inferring demographic attributes from mobile usage data and discusses the implications of the findings, such as privacy and discrimination risks, from the perspectives of different stakeholders.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9997249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Improved Influence Maximization Method for Online Advertising in Social Internet of Things. 社交物联网中网络广告影响力最大化的改进方法。
IF 2.6 4区 计算机科学
Big Data Pub Date : 2024-01-01 Epub Date: 2023-08-02 DOI: 10.1089/big.2023.0042
Reza Molaei, Kheirollah Rahsepar Fard, Asgarali Bouyer
{"title":"An Improved Influence Maximization Method for Online Advertising in Social Internet of Things.","authors":"Reza Molaei, Kheirollah Rahsepar Fard, Asgarali Bouyer","doi":"10.1089/big.2023.0042","DOIUrl":"10.1089/big.2023.0042","url":null,"abstract":"<p><p>Recently, a new subject known as the Social Internet of Things (SIoT) has been presented based on the integration the Internet of Things and social network concepts. SIoT is increasingly popular in modern human living, including applications such as smart transportation, online health care systems, and viral marketing. In advertising based on SIoT, identifying the most effective diffuser nodes to maximize reach is a critical challenge. This article proposes an efficient heuristic algorithm named <i>Influence Maximization of advertisement for Social Internet of Things (IMSoT)</i>, inspired by real-world advertising. The IMSoT algorithm consists of two steps: selecting candidate objects and identifying the final seed set. In the first step, influential candidate objects are selected based on factors, such as degree, local importance value, and weak and sensitive neighbors set. In the second step, effective influence is calculated based on overlapping between candidate objects to identify the appropriate final seed set. The IMSoT algorithm ensures maximum influence and minimum overlap, reducing the spreading caused by the seed set. A unique feature of IMSoT is its focus on preventing duplicate advertising, which reduces extra costs, and considering weak objects to reach the maximum target audience. Experimental evaluations in both real-world and synthetic networks demonstrate that our algorithm outperforms other state-of-the-art algorithms in terms of paying attention to weak objects by 38%-193% and in terms of preventing duplicate advertising (reducing extra cost) by 26%-77%. Additionally, the running time of the IMSoT algorithm is shorter than other state-of-the-art algorithms.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9922927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信