{"title":"Kriging, Polynomial Chaos Expansion, and Low-Rank Approximations in Material Science and Big Data Analytics.","authors":"Golsa Mahdavi, Mohammad Amin Hariri-Ardebili","doi":"10.1089/big.2022.0124","DOIUrl":null,"url":null,"abstract":"<p><p>In material science and engineering, the estimation of material properties and their failure modes is associated with physical experiments followed by modeling and optimization. However, proper optimization is challenging and computationally expensive. The main reason is the highly nonlinear behavior of brittle materials such as concrete. In this study, the application of surrogate models to predict the mechanical characteristics of concrete is investigated. Specifically, meta-models such as polynomial chaos expansion, Kriging, and canonical low-rank approximation are used for predicting the compressive strength of two different types of concrete (collected from experimental data in the literature). Various assumptions in surrogate models are examined, and the accuracy of each one is evaluated for the problem at hand. Finally, the optimal solution is provided. This study paves the road for other applications of surrogate models in material science and engineering.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"270-281"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2022.0124","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In material science and engineering, the estimation of material properties and their failure modes is associated with physical experiments followed by modeling and optimization. However, proper optimization is challenging and computationally expensive. The main reason is the highly nonlinear behavior of brittle materials such as concrete. In this study, the application of surrogate models to predict the mechanical characteristics of concrete is investigated. Specifically, meta-models such as polynomial chaos expansion, Kriging, and canonical low-rank approximation are used for predicting the compressive strength of two different types of concrete (collected from experimental data in the literature). Various assumptions in surrogate models are examined, and the accuracy of each one is evaluated for the problem at hand. Finally, the optimal solution is provided. This study paves the road for other applications of surrogate models in material science and engineering.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.