{"title":"Note on the determination of the ignition point in forest fires propagation using a control algorithm","authors":"M. Bergmann, O. Séro-Guillaume, S. Ramezani","doi":"10.1002/CNM.990","DOIUrl":"https://doi.org/10.1002/CNM.990","url":null,"abstract":"This paper is devoted to the determination of the origin point in forest fires propagation using a control algorithm. The forest fires propagation are mathematically modelled starting from a reaction diffusion model. A volume of fluid (V.O.F.) formulation is also used to determine the fraction of the area which is burnt. After having developed the objective functional and its derivative, results from an optimization process based on the simplex method is presented. It is shown that the ignition point and the final time of the fire propagation are precisely recovered, even for a realistic, non-horizontal, terrain","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"24 1","pages":"879-896"},"PeriodicalIF":0.0,"publicationDate":"2007-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.990","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51604080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Total FETI—an easier implementable variant of the FETI method for numerical solution of elliptic PDE","authors":"Z. Dostál, D. Hořák, R. Kučera","doi":"10.1002/CNM.881","DOIUrl":"https://doi.org/10.1002/CNM.881","url":null,"abstract":"A new variant of the FETI method for numerical solution of elliptic PDE is presented. The basic idea is to simplify inversion of the stiffness matrices of subdomains by using Lagrange multipliers not only for gluing the subdomains along the auxiliary interfaces, but also for implementation of the Dirichlet boundary conditions. Results of numerical experiments are presented which indicate that the new method may be even more efficient then the original FETI.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"22 1","pages":"1155-1162"},"PeriodicalIF":0.0,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.881","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51599350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Rochinha, G. Alvarez, E. G. D. D. Carmo, A. Loula
{"title":"A locally discontinuous enriched finite element formulation for acoustics","authors":"F. Rochinha, G. Alvarez, E. G. D. D. Carmo, A. Loula","doi":"10.1002/CNM.946","DOIUrl":"https://doi.org/10.1002/CNM.946","url":null,"abstract":"In (Comput. Methods Appl. Mech. Eng. 2006, in press) we introduced a discontinuous Galerkin finite element method for Helmholtz equation in which continuity is relaxed locally in the interior of the element. The shape functions associated with interior nodes of the element are bilinear discontinuous bubbles, and the corresponding degrees of freedom can be eliminated at element level by static condensation yielding a global finite element method with the same connectivity of classical C° Galerkin finite element approximations. Stability is provided by the discontinuous bubbles with appropriate choice of the stabilization parameters related to the weak enforcement of continuity inside each element. In the present work, departing from the stencil obtained by condensation of the bubble degrees of freedom, we build a new strategy for determining the optimal values of these parameters aiming at matching the exact wave number in two different directions. Stability and accuracy of the proposed formulation are demonstrated in several numerical examples.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"23 1","pages":"623-637"},"PeriodicalIF":0.0,"publicationDate":"2006-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.946","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51602229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. V. Rodrigues, Fabrício Nogueira Correa, B. P. Jacob
{"title":"Implicit domain decomposition methods for coupled analysis of offshore platforms","authors":"M. V. Rodrigues, Fabrício Nogueira Correa, B. P. Jacob","doi":"10.1002/CNM.945","DOIUrl":"https://doi.org/10.1002/CNM.945","url":null,"abstract":"This work presents the implementation of optimized numerical tools for the coupled analysis of floating platforms for offshore oil exploitation. The focus is on time-domain, nonlinear dynamic analysis, considering the coupling between the hydrodynamic behaviour of the hull and the structural behaviour of the mooring lines and risers modelled by finite elements (FEs). Some aspects of the formulation and solution of the large-amplitude equations of motion of the hull of the platform are presented, including a brief description of the hydrodynamic models and calculation of the environmental forces. The main aspects of the formulation for the spatial and time discretization of the structural model for the lines are also discussed. Since coupled analyses may require excessive computational costs, the objective of this work is to present the implementation and application of domain decomposition methods, adapted and specialized for the problem at hand, in order to optimize the efficiency of the computational tool. Two groups of domain decomposition methods are considered: the first is a subcycling technique that takes into account the natural partition that exists between the hull and the lines; the second considers the internal decomposition of the mesh of FEs to represent the mooring lines and risers. The methods are devised having in mind their implementation in computers with parallel architecture. Results of a numerical application are presented in order to assess the performance of the methods.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"23 1","pages":"599-621"},"PeriodicalIF":0.0,"publicationDate":"2006-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.945","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51602193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}