分段连续函数近似的高维模型表示

R. Chowdhury, B. N. Rao, A. M. Prasad
{"title":"分段连续函数近似的高维模型表示","authors":"R. Chowdhury, B. N. Rao, A. M. Prasad","doi":"10.1002/CNM.1053","DOIUrl":null,"url":null,"abstract":"High dimensional model representation (HDMR) approximates multivariate functions in such a way that the component functions of the approximation are ordered starting from a constant and gradually approaching to multivariance as we proceed along the terms like first-order, second-order and so on. Until now HDMR applications include construction of a computational model directly from laboratory/field data, creating an efficient fully equivalent operational model to replace an existing time-consuming mathematical model, identification of key model variables, global uncertainty assessments, efficient quantitative risk assessments, etc. In this paper, the potential of HDMR for tackling univariate and multivariate piece-wise continuous functions is explored. Eight numerical examples are presented to illustrate the performance of HDMR for approximating a univariate or a multivariate piece-wise continuous function with an equivalent continuous function. Copyright © 2007 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"24 1","pages":"1587-1609"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1053","citationCount":"54","resultStr":"{\"title\":\"High dimensional model representation for piece‐wise continuous function approximation\",\"authors\":\"R. Chowdhury, B. N. Rao, A. M. Prasad\",\"doi\":\"10.1002/CNM.1053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High dimensional model representation (HDMR) approximates multivariate functions in such a way that the component functions of the approximation are ordered starting from a constant and gradually approaching to multivariance as we proceed along the terms like first-order, second-order and so on. Until now HDMR applications include construction of a computational model directly from laboratory/field data, creating an efficient fully equivalent operational model to replace an existing time-consuming mathematical model, identification of key model variables, global uncertainty assessments, efficient quantitative risk assessments, etc. In this paper, the potential of HDMR for tackling univariate and multivariate piece-wise continuous functions is explored. Eight numerical examples are presented to illustrate the performance of HDMR for approximating a univariate or a multivariate piece-wise continuous function with an equivalent continuous function. Copyright © 2007 John Wiley & Sons, Ltd.\",\"PeriodicalId\":51245,\"journal\":{\"name\":\"Communications in Numerical Methods in Engineering\",\"volume\":\"24 1\",\"pages\":\"1587-1609\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/CNM.1053\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Numerical Methods in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/CNM.1053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

高维模型表示(HDMR)以这样一种方式逼近多元函数,即近似值的分量函数从常数开始排序,随着我们继续进行一阶,二阶等项,逐渐接近多方差。到目前为止,HDMR的应用包括直接从实验室/现场数据构建计算模型,创建高效的全等效操作模型以取代现有耗时的数学模型,识别关键模型变量,全局不确定性评估,高效的定量风险评估等。本文探讨了HDMR在处理单变量和多变量分段连续函数方面的潜力。给出了八个数值例子来说明HDMR用等价连续函数逼近单变量或多变量分段连续函数的性能。版权所有©2007 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High dimensional model representation for piece‐wise continuous function approximation
High dimensional model representation (HDMR) approximates multivariate functions in such a way that the component functions of the approximation are ordered starting from a constant and gradually approaching to multivariance as we proceed along the terms like first-order, second-order and so on. Until now HDMR applications include construction of a computational model directly from laboratory/field data, creating an efficient fully equivalent operational model to replace an existing time-consuming mathematical model, identification of key model variables, global uncertainty assessments, efficient quantitative risk assessments, etc. In this paper, the potential of HDMR for tackling univariate and multivariate piece-wise continuous functions is explored. Eight numerical examples are presented to illustrate the performance of HDMR for approximating a univariate or a multivariate piece-wise continuous function with an equivalent continuous function. Copyright © 2007 John Wiley & Sons, Ltd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信