R. Aubry, R. Löhner
{"title":"On the 'most normal' normal","authors":"R. Aubry, R. Löhner","doi":"10.1002/CNM.1056","DOIUrl":null,"url":null,"abstract":"Given a set of normals in ℛ3, two algorithms are presented to compute the ‘most normal’ normal. The ‘most normal’ normal is the normal that minimizes the maximal angle with the given set of normals. A direct application is provided supposing a surface triangulation is available. The set of normals may represent either the face normals of the faces surrounding a point or the point normals of the points surrounding a point. The first algorithm is iterative and straightforward, and is inspired by the one proposed by Pirzadeh (AIAA Paper 94-0417, 1994). The second gives more insight into the complete problem as it provides the unique solution explicitly. It would correspond to the general extension of the algorithm presented by Kallinderis (AIAA-92-2721, 1992). Copyright © 2007 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"7 1","pages":"1641-1652"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1056","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
关于“最正常”的正常
给定一组法线,给出两种算法来计算“最正规”的法线。“最法线”法线是与给定法线集合的最大角度最小的法线。假设曲面三角测量是可用的,提供了一种直接应用。法线集合可以表示围绕一个点的面的法线,也可以表示围绕一个点的点的点法线。第一个算法是迭代和直接的,灵感来自于Pirzadeh (AIAA Paper 94-0417, 1994)提出的算法。第二种方法可以更深入地了解完整的问题,因为它明确地提供了唯一的解决方案。它将对应于Kallinderis (aiaa -92- 2721,1992)提出的算法的一般扩展。版权所有©2007 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。