On the 'most normal' normal

R. Aubry, R. Löhner
{"title":"On the 'most normal' normal","authors":"R. Aubry, R. Löhner","doi":"10.1002/CNM.1056","DOIUrl":null,"url":null,"abstract":"Given a set of normals in ℛ3, two algorithms are presented to compute the ‘most normal’ normal. The ‘most normal’ normal is the normal that minimizes the maximal angle with the given set of normals. A direct application is provided supposing a surface triangulation is available. The set of normals may represent either the face normals of the faces surrounding a point or the point normals of the points surrounding a point. The first algorithm is iterative and straightforward, and is inspired by the one proposed by Pirzadeh (AIAA Paper 94-0417, 1994). The second gives more insight into the complete problem as it provides the unique solution explicitly. It would correspond to the general extension of the algorithm presented by Kallinderis (AIAA-92-2721, 1992). Copyright © 2007 John Wiley & Sons, Ltd.","PeriodicalId":51245,"journal":{"name":"Communications in Numerical Methods in Engineering","volume":"7 1","pages":"1641-1652"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/CNM.1056","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Numerical Methods in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/CNM.1056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Given a set of normals in ℛ3, two algorithms are presented to compute the ‘most normal’ normal. The ‘most normal’ normal is the normal that minimizes the maximal angle with the given set of normals. A direct application is provided supposing a surface triangulation is available. The set of normals may represent either the face normals of the faces surrounding a point or the point normals of the points surrounding a point. The first algorithm is iterative and straightforward, and is inspired by the one proposed by Pirzadeh (AIAA Paper 94-0417, 1994). The second gives more insight into the complete problem as it provides the unique solution explicitly. It would correspond to the general extension of the algorithm presented by Kallinderis (AIAA-92-2721, 1992). Copyright © 2007 John Wiley & Sons, Ltd.
关于“最正常”的正常
给定一组法线,给出两种算法来计算“最正规”的法线。“最法线”法线是与给定法线集合的最大角度最小的法线。假设曲面三角测量是可用的,提供了一种直接应用。法线集合可以表示围绕一个点的面的法线,也可以表示围绕一个点的点的点法线。第一个算法是迭代和直接的,灵感来自于Pirzadeh (AIAA Paper 94-0417, 1994)提出的算法。第二种方法可以更深入地了解完整的问题,因为它明确地提供了唯一的解决方案。它将对应于Kallinderis (aiaa -92- 2721,1992)提出的算法的一般扩展。版权所有©2007 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信