Statistics and Its Interface最新文献

筛选
英文 中文
Model-based statistical depth for matrix data 基于模型的矩阵数据统计深度
IF 0.8 4区 数学
Statistics and Its Interface Pub Date : 2024-02-01 DOI: 10.4310/23-sii829
Yue Mu, Guanyu Hu, Wei Wu
{"title":"Model-based statistical depth for matrix data","authors":"Yue Mu, Guanyu Hu, Wei Wu","doi":"10.4310/23-sii829","DOIUrl":"https://doi.org/10.4310/23-sii829","url":null,"abstract":"The field of matrix data learning has witnessed significant advancements in recent years, encompassing diverse datasets such as medical images, social networks, and personalized recommendation systems. These advancements have found widespread application in various domains, including medicine, biology, public health, engineering, finance, economics, sports analytics, and environmental sciences. While extensive research has been conducted on estimation, inference, prediction, and computation for matrix data, the ranking problem has not received adequate attention. Statistical depth, a measure providing a centeroutward rank for different data types, has been introduced in the past few decades. However, its exploration has been limited due to the complexity of the second and higher orderstatistics. In this paper, we propose an approach to rank matrix data by employing a model-based depth framework. Our methodology involves estimating the eigen-decomposition of a 4th-order covariance tensor. To enable this process using conventional matrix operations, we specify the tensor product operator between matrices and 4th-order tensors. Furthermore, we introduce a Kronecker product form on the covariance to enhance the robustness and efficiency of the estimation process, effectively reducing the number of parameters in the model. Based on this new framework, we develop an efficient algorithm to estimate the model-based statistical depth. To validate the effectiveness of our proposed method, we conduct simulations and apply it to two real-world applications: field goal attempts of NBA players and global temperature anomalies.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"281 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139658971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rank-R matrix autoregressive models for modeling spatio-temporal data 用于时空数据建模的 Rank-R 矩阵自回归模型
IF 0.8 4区 数学
Statistics and Its Interface Pub Date : 2024-02-01 DOI: 10.4310/23-sii812
Nan-Jung Hsu, Hsin-Cheng Huang, Ruey S. Tsay, Tzu-Chieh Kao
{"title":"Rank-R matrix autoregressive models for modeling spatio-temporal data","authors":"Nan-Jung Hsu, Hsin-Cheng Huang, Ruey S. Tsay, Tzu-Chieh Kao","doi":"10.4310/23-sii812","DOIUrl":"https://doi.org/10.4310/23-sii812","url":null,"abstract":"We develop a matrix-variate autoregressive (MAR) model to analyze spatio-temporal data organized on a regular grid in space. The model is an extension of the bilinear MAR spatial model of Hsu, Huang and Tsay $href{ https://doi.org/10.1080/10618600.2021.1938587 }{[10]}$ by increasing its flexibility and applicability in empirical applications. Specifically, we propose to model each autoregressive (AR) coefficient matrix of the MAR model by $R$ bilinear terms, thereby establishing a rank‑R model. The extension can be interpreted as decomposing the AR dynamics of the data into $R$ bilinear MAR components. We further incorporate a banded neighborhood structure for AR coefficient matrices and utilize a flexible nonstationary low-rank covariance model for the spatial innovation process, leading to a parsimonious model without sacrificing its flexibility. We estimate all parameters of the model by the maximum likelihood method and develop a computationally efficient alternating direction method of multipliers algorithm, involving only closed-form expressions in all steps. Applications to a wind-speed dataset and an employment dataset, as well as two simulation experiments, demonstrate the effectiveness of the proposed method in estimation, model selection, and prediction.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"36 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139659193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging mediation analysis for longitudinal outcomes: a case study of childhood brain tumor survivorship. 纵向结果的影像中介分析:儿童脑肿瘤存活个案研究。
IF 0.7 4区 数学
Statistics and Its Interface Pub Date : 2024-01-01 Epub Date: 2024-07-19 DOI: 10.4310/23-sii815
Yimei Li, Jade Xiaoqing Wang, Grace Chen Zhou, Heather M Conklin, Arzu Onar-Thomas, Amar Gajjar, Wilburn E Reddick, Cai Li
{"title":"Imaging mediation analysis for longitudinal outcomes: a case study of childhood brain tumor survivorship.","authors":"Yimei Li, Jade Xiaoqing Wang, Grace Chen Zhou, Heather M Conklin, Arzu Onar-Thomas, Amar Gajjar, Wilburn E Reddick, Cai Li","doi":"10.4310/23-sii815","DOIUrl":"10.4310/23-sii815","url":null,"abstract":"<p><p>Aggressive cancer treatments that affect the central nervous system are associated with an increased risk of cognitive deficits. As treatment for pediatric brain tumors has become more effective, there has been a heightened focus on improving cognitive outcomes, which can significantly affect the quality of life for pediatric cancer survivors. This paper is motivated by and applied to a clinical trial for medulloblastoma, the most common malignant brain tumor in children. The trial collects comprehensive data including treatment-related clinical information, neuroimaging, and longitudinal neurocognitive outcomes to enhance our understanding of the responses to treatment and the enduring impacts of radiation therapy on the survivors of medulloblastoma. To this end, we have developed a new mediation model tailored for longitudinal outcomes with high-dimensional imaging mediators. Specifically, we adopt a joint binary Ising-Gaussian Markov random field prior distribution to account for spatial dependency and smoothness of ultra-high-dimensional neuroimaging mediators for enhancing detection power of informative voxels. By exploiting the proposed approach, we identify causal pathways and the corresponding white matter microstructures mediating the negative impact of irradiation on neurodevelopment. The results provide guidance on sparing the brain regions and improving long-term neurodevelopment for pediatric cancer survivors. Simulation studies also confirm the validity of the proposed method.</p>","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"17 3","pages":"533-548"},"PeriodicalIF":0.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145187440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latent class proportional hazards regression with heterogeneous survival data 潜在类别比例风险回归与异质生存数据
IF 0.8 4区 数学
Statistics and Its Interface Pub Date : 2023-11-27 DOI: 10.4310/23-sii785
Teng Fei, John J. Hanfelt, Limin Peng
{"title":"Latent class proportional hazards regression with heterogeneous survival data","authors":"Teng Fei, John J. Hanfelt, Limin Peng","doi":"10.4310/23-sii785","DOIUrl":"https://doi.org/10.4310/23-sii785","url":null,"abstract":"Heterogeneous survival data are commonly present in chronic disease studies. Delineating meaningful disease subtypes directly linked to a survival outcome can generate useful scientific implications. In this work, we develop a latent class proportional hazards (PH) regression framework to address such an interest. We propose mixture proportional hazards modeling, which flexibly accommodates class-specific covariate effects while allowing for the baseline hazard function to vary across latent classes. Adapting the strategy of nonparametric maximum likelihood estimation, we derive an Expectation-Maximization (E‑M) algorithm to estimate the proposed model. We establish the theoretical properties of the resulting estimators. Extensive simulation studies are conducted, demonstrating satisfactory finite-sample performance of the proposed method as well as the predictive benefit from accounting for the heterogeneity across latent classes. We further illustrate the practical utility of the proposed method through an application to a mild cognitive impairment (MCI) cohort in the Uniform Data Set.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"36 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138525577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frequentist Bayesian compound inference 频率贝叶斯复合推理
IF 0.8 4区 数学
Statistics and Its Interface Pub Date : 2023-11-27 DOI: 10.4310/23-sii797
Jinfeng Xu, Ao Yuan
{"title":"Frequentist Bayesian compound inference","authors":"Jinfeng Xu, Ao Yuan","doi":"10.4310/23-sii797","DOIUrl":"https://doi.org/10.4310/23-sii797","url":null,"abstract":"In practice often either the Bayesian or frequentist method is used, although there are some combined uses of the two methods, a formal unified methodology of the two hasn’t been seen. Here we first give a brief review of the two methods and some combination of the two, then propose a procedure using both the frequentist likelihood and the Bayesian posterior loss in parameter estimation and hypothesis testing, as an attempt to unify the two methods. Basic properties of the proposed method are studied, and simulation studies are carried out to evaluate the performance of the method.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"8 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138525578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guiding light: An essay for Professor Lincheng Zhao on the occasion of his 80th birthday 指路明灯:赵林成教授八十大寿随笔
IF 0.8 4区 数学
Statistics and Its Interface Pub Date : 2023-11-27 DOI: 10.4310/22-sii772
Zhidong Bai
{"title":"Guiding light: An essay for Professor Lincheng Zhao on the occasion of his 80th birthday","authors":"Zhidong Bai","doi":"10.4310/22-sii772","DOIUrl":"https://doi.org/10.4310/22-sii772","url":null,"abstract":"Lincheng Zhao was admitted to the Department of Applied Mathematics of the University of Science and Technology of China (USTC) in 1960, three years before me, and then took a year off due to illness and transferred to the entering class of 1961. We were both not good at socializing, so although we had been classmates for three years, we didn’t know each other. In 1978, when we were both admitted to the Department of Mathematics for graduate studies, we got to know each other. Since then, we have known each other, made friends, and helped each other in all aspects of research and life, and we have become good mentors and friends with each other. On the occasion of Professor Zhao’s 80th birthday, I would like to recall a little of the past events of our acquaintance and friendship to express my gratitude to Academic Elder Brother Zhao.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"33 3-4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138525584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of nonparametric regression methods for longitudinal data 纵向数据的非参数回归方法综述
IF 0.8 4区 数学
Statistics and Its Interface Pub Date : 2023-11-27 DOI: 10.4310/23-sii801
Changxin Yang, Zhongyi Zhu
{"title":"A review of nonparametric regression methods for longitudinal data","authors":"Changxin Yang, Zhongyi Zhu","doi":"10.4310/23-sii801","DOIUrl":"https://doi.org/10.4310/23-sii801","url":null,"abstract":"Longitudinal data, which involve measuring a group of subjects repeatedly over time, frequently arise in many clinical and biomedical applications. To identify the complex patterns of change in the outcome and their association with covariates over time, a sufficiently flexible model is always required. Nonparametric regression, known for being data-adaptive and less restrictive than parametric approaches, becomes a promising tool for handling longitudinal data. This paper reviews various nonparametric regression methods for longitudinal data, including specific traditional nonparametric methods for the univariate case and several representative methods for the multivariate case, among which tree-based techniques are dominant. We summarize their motivations and provide a brief practical performance comparison of these methods in simulations, as well as discuss potential future research directions.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"2 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138542339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Copy number variation detection based on constraint least squares 基于约束最小二乘的拷贝数变异检测
IF 0.8 4区 数学
Statistics and Its Interface Pub Date : 2023-11-27 DOI: 10.4310/23-sii814
Xiaopu Wang, Xueqin Wang, Aijun Zhang, Canhong Wen
{"title":"Copy number variation detection based on constraint least squares","authors":"Xiaopu Wang, Xueqin Wang, Aijun Zhang, Canhong Wen","doi":"10.4310/23-sii814","DOIUrl":"https://doi.org/10.4310/23-sii814","url":null,"abstract":"Copy number variations (CNVs) are a form of structural variation of a DNA sequence, including amplification and deletion of a particular DNA segment on chromosomes. Due to the huge amount of data in every DNA sequence, there is a great need for a computationally fast algorithm that accurately identifies CNVs. In this paper, we formulate the detection of CNVs as a constraint least squares problem and show that circular binary segmentation is a greedy approach to solving this problem. To solve this problem with high accuracy and efficiency, we first derived a necessary optimality condition for its solution based on the alternating minimization technique and then developed a computationally efficient algorithm named AMIAS. The performance of our method was tested on both simulated data and two realworld applications using genomic data from diagnosed primal glioblastoma and the HapMap project. Our proposed method has competitive performance in identifying CNVs with high-throughput genotypic data.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"2 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138525581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aligning sample size calculations with estimands in clinical trials with time-to-event outcomes 将样本量计算与临床试验的估计与事件发生时间结果相一致
IF 0.8 4区 数学
Statistics and Its Interface Pub Date : 2023-11-27 DOI: 10.4310/23-sii804
Yixin Fang, Man Jin, Chengqing Wu
{"title":"Aligning sample size calculations with estimands in clinical trials with time-to-event outcomes","authors":"Yixin Fang, Man Jin, Chengqing Wu","doi":"10.4310/23-sii804","DOIUrl":"https://doi.org/10.4310/23-sii804","url":null,"abstract":"The ICH E9(R1) guidance recommended a framework to align planning, design, conduct, analysis, and interpretation of any clincial trial with its objective and estimand. How to handle intercurrent events (ICEs) is one of the five attributes of an estimand and sample size calculation is a key step in the trial planning and design. Therefore, sample size calculation should be aligned with the estimand and, in particular, with how the ICEs are handled. ICH E9(R1) summarized five strategies for handling ICEs, and five approaches have been proposed in the literature for sample size calculation when planning trials with quantitative and binary outcomes. In this paper, we discuss how to apply the five strategies to deal with ICEs in clinical trials with time-to-event outcomes and propose five approaches for sample size calculation that are aligned with the five strategies, respectively.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"24 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138525566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nonparametric concurrent regression model with multivariate functional inputs 具有多元函数输入的非参数并发回归模型
IF 0.8 4区 数学
Statistics and Its Interface Pub Date : 2023-11-27 DOI: 10.4310/23-sii782
Yutong Zhai, Zhanfeng Wang, Yuedong Wang
{"title":"A nonparametric concurrent regression model with multivariate functional inputs","authors":"Yutong Zhai, Zhanfeng Wang, Yuedong Wang","doi":"10.4310/23-sii782","DOIUrl":"https://doi.org/10.4310/23-sii782","url":null,"abstract":"Regression models with functional responses and covariates have attracted extensive research. Nevertheless, there is no existing method for the situation where the functional covariates are bivariate functions with one of the variables in common with the response function. In this article, we propose a nonparametric function-on-function regression method. We construct model spaces using a Gaussian kernel function and smoothing spline ANOVA decomposition. We estimate the nonparametric function using penalized likelihood and study properties of the Gaussian kernel function and the convergence rate of the proposed estimation method. We evaluate the proposed methods using simulations and illustrate them using two real data examples.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"12 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138525586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信