频率贝叶斯复合推理

Pub Date : 2023-11-27 DOI:10.4310/23-sii797
Jinfeng Xu, Ao Yuan
{"title":"频率贝叶斯复合推理","authors":"Jinfeng Xu, Ao Yuan","doi":"10.4310/23-sii797","DOIUrl":null,"url":null,"abstract":"In practice often either the Bayesian or frequentist method is used, although there are some combined uses of the two methods, a formal unified methodology of the two hasn’t been seen. Here we first give a brief review of the two methods and some combination of the two, then propose a procedure using both the frequentist likelihood and the Bayesian posterior loss in parameter estimation and hypothesis testing, as an attempt to unify the two methods. Basic properties of the proposed method are studied, and simulation studies are carried out to evaluate the performance of the method.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequentist Bayesian compound inference\",\"authors\":\"Jinfeng Xu, Ao Yuan\",\"doi\":\"10.4310/23-sii797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In practice often either the Bayesian or frequentist method is used, although there are some combined uses of the two methods, a formal unified methodology of the two hasn’t been seen. Here we first give a brief review of the two methods and some combination of the two, then propose a procedure using both the frequentist likelihood and the Bayesian posterior loss in parameter estimation and hypothesis testing, as an attempt to unify the two methods. Basic properties of the proposed method are studied, and simulation studies are carried out to evaluate the performance of the method.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/23-sii797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/23-sii797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在实践中,通常使用贝叶斯方法或频率方法,尽管这两种方法有一些组合使用,但尚未看到两者的正式统一方法。在这里,我们首先简要回顾了这两种方法以及两者的一些组合,然后提出了一种在参数估计和假设检验中同时使用频率似然和贝叶斯后验损失的方法,试图统一这两种方法。研究了该方法的基本特性,并进行了仿真研究以评价该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Frequentist Bayesian compound inference
In practice often either the Bayesian or frequentist method is used, although there are some combined uses of the two methods, a formal unified methodology of the two hasn’t been seen. Here we first give a brief review of the two methods and some combination of the two, then propose a procedure using both the frequentist likelihood and the Bayesian posterior loss in parameter estimation and hypothesis testing, as an attempt to unify the two methods. Basic properties of the proposed method are studied, and simulation studies are carried out to evaluate the performance of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信