{"title":"Latent class proportional hazards regression with heterogeneous survival data","authors":"Teng Fei, John J. Hanfelt, Limin Peng","doi":"10.4310/23-sii785","DOIUrl":null,"url":null,"abstract":"Heterogeneous survival data are commonly present in chronic disease studies. Delineating meaningful disease subtypes directly linked to a survival outcome can generate useful scientific implications. In this work, we develop a latent class proportional hazards (PH) regression framework to address such an interest. We propose mixture proportional hazards modeling, which flexibly accommodates class-specific covariate effects while allowing for the baseline hazard function to vary across latent classes. Adapting the strategy of nonparametric maximum likelihood estimation, we derive an Expectation-Maximization (E‑M) algorithm to estimate the proposed model. We establish the theoretical properties of the resulting estimators. Extensive simulation studies are conducted, demonstrating satisfactory finite-sample performance of the proposed method as well as the predictive benefit from accounting for the heterogeneity across latent classes. We further illustrate the practical utility of the proposed method through an application to a mild cognitive impairment (MCI) cohort in the Uniform Data Set.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"36 3","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/23-sii785","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous survival data are commonly present in chronic disease studies. Delineating meaningful disease subtypes directly linked to a survival outcome can generate useful scientific implications. In this work, we develop a latent class proportional hazards (PH) regression framework to address such an interest. We propose mixture proportional hazards modeling, which flexibly accommodates class-specific covariate effects while allowing for the baseline hazard function to vary across latent classes. Adapting the strategy of nonparametric maximum likelihood estimation, we derive an Expectation-Maximization (E‑M) algorithm to estimate the proposed model. We establish the theoretical properties of the resulting estimators. Extensive simulation studies are conducted, demonstrating satisfactory finite-sample performance of the proposed method as well as the predictive benefit from accounting for the heterogeneity across latent classes. We further illustrate the practical utility of the proposed method through an application to a mild cognitive impairment (MCI) cohort in the Uniform Data Set.
期刊介绍:
Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.