具有多元函数输入的非参数并发回归模型

IF 0.3 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Yutong Zhai, Zhanfeng Wang, Yuedong Wang
{"title":"具有多元函数输入的非参数并发回归模型","authors":"Yutong Zhai, Zhanfeng Wang, Yuedong Wang","doi":"10.4310/23-sii782","DOIUrl":null,"url":null,"abstract":"Regression models with functional responses and covariates have attracted extensive research. Nevertheless, there is no existing method for the situation where the functional covariates are bivariate functions with one of the variables in common with the response function. In this article, we propose a nonparametric function-on-function regression method. We construct model spaces using a Gaussian kernel function and smoothing spline ANOVA decomposition. We estimate the nonparametric function using penalized likelihood and study properties of the Gaussian kernel function and the convergence rate of the proposed estimation method. We evaluate the proposed methods using simulations and illustrate them using two real data examples.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"12 3","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A nonparametric concurrent regression model with multivariate functional inputs\",\"authors\":\"Yutong Zhai, Zhanfeng Wang, Yuedong Wang\",\"doi\":\"10.4310/23-sii782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regression models with functional responses and covariates have attracted extensive research. Nevertheless, there is no existing method for the situation where the functional covariates are bivariate functions with one of the variables in common with the response function. In this article, we propose a nonparametric function-on-function regression method. We construct model spaces using a Gaussian kernel function and smoothing spline ANOVA decomposition. We estimate the nonparametric function using penalized likelihood and study properties of the Gaussian kernel function and the convergence rate of the proposed estimation method. We evaluate the proposed methods using simulations and illustrate them using two real data examples.\",\"PeriodicalId\":51230,\"journal\":{\"name\":\"Statistics and Its Interface\",\"volume\":\"12 3\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Its Interface\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/23-sii782\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/23-sii782","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

具有功能响应和协变量的回归模型引起了广泛的研究。然而,对于函数协变量为二元函数且其中一个变量与响应函数相同的情况,目前尚无方法。在本文中,我们提出了一种非参数函数对函数回归方法。我们使用高斯核函数和平滑样条方差分析来构建模型空间。利用惩罚似然法对非参数函数进行估计,研究了高斯核函数的性质和该估计方法的收敛速度。我们用仿真来评估所提出的方法,并用两个真实的数据例子来说明它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nonparametric concurrent regression model with multivariate functional inputs
Regression models with functional responses and covariates have attracted extensive research. Nevertheless, there is no existing method for the situation where the functional covariates are bivariate functions with one of the variables in common with the response function. In this article, we propose a nonparametric function-on-function regression method. We construct model spaces using a Gaussian kernel function and smoothing spline ANOVA decomposition. We estimate the nonparametric function using penalized likelihood and study properties of the Gaussian kernel function and the convergence rate of the proposed estimation method. We evaluate the proposed methods using simulations and illustrate them using two real data examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Its Interface
Statistics and Its Interface MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
0.90
自引率
12.50%
发文量
45
审稿时长
6 months
期刊介绍: Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信