Structural Health Monitoring-An International Journal最新文献

筛选
英文 中文
Ramanujan-gram: an autonomous weak period fault extraction method under strong noise Ramanujan-gram:一种强噪声下的自主弱周期故障提取方法
2区 工程技术
Structural Health Monitoring-An International Journal Pub Date : 2023-10-10 DOI: 10.1177/14759217231197806
Haiyang Pan, Hong Feng, Jian Cheng, Jinde Zheng
{"title":"Ramanujan-gram: an autonomous weak period fault extraction method under strong noise","authors":"Haiyang Pan, Hong Feng, Jian Cheng, Jinde Zheng","doi":"10.1177/14759217231197806","DOIUrl":"https://doi.org/10.1177/14759217231197806","url":null,"abstract":"Under the influence of strong noise, period fault features of rolling bearing are not obvious, which increases the difficulty of accurately extracting period fault features. An autonomous weak period fault extraction method under strong noise named Ramanujan-gram is proposed in this paper. The greatest advantage of Ramanujan-gram is that it uses the Ramanujan feature extraction technique to reconstruct the components in each frequency band, which can overcome the weakness of the weak noise robustness of the filter methods used by the traditional kurtogram methods and improve the accuracy of period fault feature extraction. Meanwhile, the adaptive frequency band segmentation method based on the order statistical filter is used for adaptive frequency band segmentation, which overcomes the defect that the binary tree structure of fixed frequency band segmentation may destroy the optimal demodulated frequency band. Considering that kurtosis index is difficult to accurately evaluate period fault information in components, Ramanujan-gram adopts adaptive square envelope spectrum weighted kurtosis index to improve the evaluation accuracy of period fault information. The test signals of rolling bearing verify that Ramanujan-gram has strong noise robustness and is an effective method for weak period fault extraction under strong noise.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136357450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistics of acoustic emission waveforms in characterizing the fracture process zone in fibre-reinforced cementitious materials under mode I fracture I型断裂下纤维增强胶凝材料断裂过程区的声发射波形统计
2区 工程技术
Structural Health Monitoring-An International Journal Pub Date : 2023-10-10 DOI: 10.1177/14759217231196216
R. Vidya Sagar, Indrashish Saha, Dibya Jyoti Basu, Tribikram Kundu
{"title":"Statistics of acoustic emission waveforms in characterizing the fracture process zone in fibre-reinforced cementitious materials under mode I fracture","authors":"R. Vidya Sagar, Indrashish Saha, Dibya Jyoti Basu, Tribikram Kundu","doi":"10.1177/14759217231196216","DOIUrl":"https://doi.org/10.1177/14759217231196216","url":null,"abstract":"This article reports on the characteristics of fracture process zone in steel fibre-reinforced concrete (SFRC) under the mode I fracture process using acoustic emission (AE) testing. The generated AE waveforms during mode I fracture process in SFRC were recorded in the laboratory. Using a statistical analysis of AE waveforms, it was observed that as the loading increases, a damage zone consisting of numerous microcracks develops ahead of the predefined notch tip. The location of the generated AE events related to the numerous microcracks were classified into three zones namely (i) major damage, (ii) moderate damage and (iii) low damage. The areas of these regions were evaluated from the distribution of the AE events around the pre-notch. The number of AE events reduced with the increase in the steel fibre content under the same experimental conditions. The major damage zone was located ahead of the notch tip very closely and it comprised of AE events with (i) high peak amplitude, (ii) low information entropy and (iii) longer AE waveform duration.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136295578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian forces identification in cable networks with small bending stiffness 小弯曲刚度索网的贝叶斯力辨识
2区 工程技术
Structural Health Monitoring-An International Journal Pub Date : 2023-10-10 DOI: 10.1177/14759217231186957
Davide Piciucco, Francesco Foti, Margaux Geuzaine, Vincent Denoël
{"title":"Bayesian forces identification in cable networks with small bending stiffness","authors":"Davide Piciucco, Francesco Foti, Margaux Geuzaine, Vincent Denoël","doi":"10.1177/14759217231186957","DOIUrl":"https://doi.org/10.1177/14759217231186957","url":null,"abstract":"The regular monitoring of cable forces is essential for ensuring the safety of cable structures both during construction and throughout their lifetime. This paper aims at developing a vibration-based identification procedure of the axial forces, bending stiffness, and, secondarily, the crossing point position of cable networks. A model constituted by two crossing stays having small bending stiffness and negligible sag effects is considered. The in-plane direct dynamic problem is solved both numerically and through a perturbation approach. The obtained results are compared to the outcomes of a finite element model for verification purposes. The theoretical studies are also supported by experimental tests performed on a real cable-stayed bridge (Haccourt bridge), which provide insights into the dynamics of the system showing that models of cables with small bending stiffness are more appropriate than taut string models. The inverse analysis based on non-linear Bayesian regression is developed and the closed-form asymptotic formulations are used to prove that the bending stiffness, the cable forces, and the crossing point position can be separately identified from a set of observed frequencies. The implemented procedure is then applied to the tested bridge as a proof of concept, showing that the proposed in-plane identification strategy provides satisfactory results.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136358080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient fault extraction for wind turbine generator bearing based on Bayesian biorthogonal sparse representation using adaptive redundant lifting wavelet dictionary 基于贝叶斯双正交稀疏表示的自适应冗余提升小波字典风电轴承暂态故障提取
2区 工程技术
Structural Health Monitoring-An International Journal Pub Date : 2023-10-10 DOI: 10.1177/14759217231198101
Shuo Zhang, Zhiwen Liu, Sihai He, Yunping Chen
{"title":"Transient fault extraction for wind turbine generator bearing based on Bayesian biorthogonal sparse representation using adaptive redundant lifting wavelet dictionary","authors":"Shuo Zhang, Zhiwen Liu, Sihai He, Yunping Chen","doi":"10.1177/14759217231198101","DOIUrl":"https://doi.org/10.1177/14759217231198101","url":null,"abstract":"Aiming at the problem that it is difficult to detect effective transient impact characteristics of wind turbine generator bearing fault signals due to non-stationary and strong noise, a fault diagnosis method based on adaptive redundant lifting wavelet dictionary and Bayesian biorthogonal sparse representation (SR) algorithm is proposed. First, a Bayesian model is integrated into the biorthogonal matching pursuit (MP) algorithm to improve the use of dictionary atoms in the effective support set. Then, an adaptive redundant lifting wavelet is used to construct a dictionary matching the transient characteristics of the signal. Finally, the SR algorithm is established by integrating the Bayesian biorthogonal MP model and adaptive redundant lifting wavelet dictionary. Simulation and experimental results show that the proposed method can improve the accuracy of signal reconstruction of transient components and effectively extract bearing fault features, thus verifying the effectiveness and robustness of the method.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136294313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridge-bearing disengagement identification based on flexibility matrix diagonal matrix change rate: an indoor physical simulation experiment 基于柔度矩阵对角矩阵变化率的桥梁支座脱离识别:室内物理模拟实验
2区 工程技术
Structural Health Monitoring-An International Journal Pub Date : 2023-10-10 DOI: 10.1177/14759217231194222
Shiji Ma, Lan Qiao, Qingwen Li
{"title":"Bridge-bearing disengagement identification based on flexibility matrix diagonal matrix change rate: an indoor physical simulation experiment","authors":"Shiji Ma, Lan Qiao, Qingwen Li","doi":"10.1177/14759217231194222","DOIUrl":"https://doi.org/10.1177/14759217231194222","url":null,"abstract":"The disengagement of bridge bearings is a pervasive issue encountered in the realm of bridges, which can potentially lead to changes in operational circumstances, diminished longevity, and compromised traffic safety. The current methods employed for detecting such disconnections primarily rely on force sensors, cameras, and acceleration sensors. However, their practical implementation on-site and effectiveness in accurately identifying disengagement require enhancement. To address the challenges associated with the installation and layout of conventional contact sensors, as well as the potential introduction of additional mass, a sophisticated “bridge-bearing disconnection detection system” has been devised. This innovative system is based on laser Doppler vibrometer technology, which eliminates the need for physical contact. The feasibility of employing non-contact laser Doppler vibration measurement technology in the detection of bridge-bearing disconnection has been successfully verified within the framework of this study. Furthermore, a comprehensive analysis of the sensitivity of key dynamic parameters, specifically natural frequencies and vibration modes, to bridge-bearing disengagement has been conducted. The verification process included evaluating the identification effectiveness of regularized combined absolute changes in vibration modes and flexibility matrix diagonal matrix change rate (FDMCR) under diverse working conditions simulating complete disconnection. This assessment involved using both finite element analysis and empirical measurements. The findings unequivocally demonstrate that the disconnection of bridge bearings results in a reduction in the natural frequencies for each mode order, with an observed cumulative effect. In addition, it is noteworthy that the vibration mode indices typically exhibit greater sensitivity toward the disconnection of outer bearings. By contrast, FDMCR demonstrates commendable positioning capabilities and exceptional noise resistance in identifying bridge-bearing disengagement. The empirical insights gleaned from these research findings hold significant value in terms of on-site identification of bridge-bearing disengagement, ultimately contributing to the preservation of bridges’ long-term operational integrity.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136295319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep-learning-based multistate monitoring method of belt conveyor turning section 基于深度学习的带式输送机转弯段多状态监测方法
2区 工程技术
Structural Health Monitoring-An International Journal Pub Date : 2023-10-10 DOI: 10.1177/14759217231202964
Mengchao Zhang, Kai Jiang, Shuai Zhao, Nini Hao, Yuan Zhang
{"title":"Deep-learning-based multistate monitoring method of belt conveyor turning section","authors":"Mengchao Zhang, Kai Jiang, Shuai Zhao, Nini Hao, Yuan Zhang","doi":"10.1177/14759217231202964","DOIUrl":"https://doi.org/10.1177/14759217231202964","url":null,"abstract":"During transportation, bulk materials are susceptible to spillage due to equipment instability and environmental factors, resulting in increased maintenance costs and environmental pollution. Thus, intelligent and efficient condition monitoring is crucial for maintaining operational efficiency of transfer equipment. It facilitates the timely identification of potential safety hazards, preventing accidents from occurring or their impact from spreading, thereby minimizing production and maintenance costs. This study presents a deep-learning-based multioperation synchronous monitoring method suitable for belt conveyors that integrate target segmentation and detection networks to simultaneously diagnose belt deviation, measure conveying load, identify idlers, and do other tasks on a self-made dataset. This method effectively reduces the complexity of multistate simultaneous monitoring and monitoring costs, thereby avoiding environmental pollution caused by transportation accidents. Experimental results show that the segmentation accuracy of the proposed method can be up to 88.72%, with a detection accuracy of 91.3% and an overall inference speed of 90.9 frames per second. Furthermore, by extending the dataset, the proposed method can incorporate additional tasks, such as belt damage, scattered material, and foreign object identifications. This study has practical significance in ensuring the normal and eco-friendly operation of bulk material transportation. Our source dataset is available at https://github.com/zhangzhangzhang1618/dataset-for-turnning-section","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136295723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A data-driven hybrid approach to generate synthetic data for unavailable damage scenarios in welded rails for ultrasonic guided wave monitoring 一种数据驱动的混合方法,用于超声导波监测焊接轨道不可用损伤情景生成合成数据
2区 工程技术
Structural Health Monitoring-An International Journal Pub Date : 2023-10-10 DOI: 10.1177/14759217231197265
Dineo A Ramatlo, Daniel N Wilke, Philip W Loveday
{"title":"A data-driven hybrid approach to generate synthetic data for unavailable damage scenarios in welded rails for ultrasonic guided wave monitoring","authors":"Dineo A Ramatlo, Daniel N Wilke, Philip W Loveday","doi":"10.1177/14759217231197265","DOIUrl":"https://doi.org/10.1177/14759217231197265","url":null,"abstract":"Developing reliable ultrasonic-guided wave monitoring systems requires a significant amount of inspection data for each application scenario. Experimental investigations are fundamental but require a long period and are costly, especially for real-life testing. This is exacerbated by a lack of experimental data that includes damage. In some guided wave applications, such as pipelines, it is possible to introduce artificial damage and perform lab experiments on the test structure. However, in rail track applications, laboratory experiments are either not possible or meaningful. The generation of synthetic data using modelling capabilities thus becomes increasingly important. This paper presents a variational autoencoder (VAE)-based deep learning approach for generating synthetic ultrasonic inspection data for welded railway tracks. The primary aim is to use a VAE model to generate synthetic data containing damage signatures at specified positions along the length of a rail track. The VAE is trained to encode an input damage-free baseline signal and decode to reconstruct an inspection signal with damage by adding a damage signature on either side of the transducer by specifying the distance to the damage signature as an additional variable in the latent space. The training data was produced from a physics-based model that computes virtual experimental response signals using the semi-analytical finite element and the traditional finite element procedures. The VAE reconstructed response signals containing damage signatures were almost identical to the original target signals simulated using the physics-based model. The VAE was able to capture the complex features in the signals resulting from the interaction of multiple propagating modes in a multi-discontinuous waveguide. The VAE model successfully generated synthetic inspection data by fusing reflections from welds with the reflection from a crack model at specified distances from the transducer on either the right or left side. In some cases, the VAE did not exactly reconstruct the peak amplitude of the reflections. This study demonstrated the potential and highlighted the benefit of using a VAE to generate synthetic data with damage signatures as opposed to using superposition to fuse the damage-free responses containing reflections from welds with a damage signature. The results show that it is possible to generate realistic inspection data for unavailable damage scenarios.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136357752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An LSTM-based anomaly detection model for the deformation of concrete dams 基于lstm的混凝土坝变形异常检测模型
2区 工程技术
Structural Health Monitoring-An International Journal Pub Date : 2023-10-10 DOI: 10.1177/14759217231199569
Changwei Liu, Jianwen Pan, Jinting Wang
{"title":"An LSTM-based anomaly detection model for the deformation of concrete dams","authors":"Changwei Liu, Jianwen Pan, Jinting Wang","doi":"10.1177/14759217231199569","DOIUrl":"https://doi.org/10.1177/14759217231199569","url":null,"abstract":"Anomaly detection in deformation is important for structural health monitoring and safety evaluation of dams. In this paper, an anomaly detection model for the deformation of arch dams is presented. It combines the long short-term memory network (LSTM)-based behavior model for dam deformation prediction and the small probability method for control limits determination, and thus is called an LSTM-based anomaly detection model. To demonstrate the advantages of the LSTM-based anomaly detection model, the traditional hydrostatic-seasonal-time behavior model and the confidence interval method are considered for comparison. The 178 m-high Longyangxia Arch Dam is taken as a case study. The results show that the LSTM-based model has sufficiently high accuracy for dam deformation prediction, especially can accurately predict displacement peaks and troughs. The LSTM-based anomaly detection model can significantly avoid false warnings and missing alarms and is able to send alarms in time when the occurrence of adverse conditions causes abnormal deformation of the dam.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136295332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An unsupervised online anomaly detection method for metal additive manufacturing processes via a statistical time-frequency domain algorithm 基于统计时频域算法的金属增材制造过程无监督在线异常检测方法
2区 工程技术
Structural Health Monitoring-An International Journal Pub Date : 2023-10-10 DOI: 10.1177/14759217231193702
Alvin Chen, Fotis Kopsaftopoulos, Sandipan Mishra
{"title":"An unsupervised online anomaly detection method for metal additive manufacturing processes via a statistical time-frequency domain algorithm","authors":"Alvin Chen, Fotis Kopsaftopoulos, Sandipan Mishra","doi":"10.1177/14759217231193702","DOIUrl":"https://doi.org/10.1177/14759217231193702","url":null,"abstract":"Anomalies often occur in metal additive manufacturing from processing inconsistencies and uncertainty. A robust fault detection system that uses sensor measurements such as melt pool imaging has the potential to improve part quality and save production time by anticipating print failure. Toward this goal, we develop and validate a fault detection technique using melt pool geometry-related measurements from an in situ near-infrared optical camera. This method is unsupervised and is trained on a small dataset, mitigating human error in classifying fault types, and reducing lead times for preparing training datasets. Furthermore, this method uses learned geometry-informed nominal behavior of the melt pool signal to make informed decisions on the process health. There are spatial-temporal characteristics embedded in the melt pool images, caused by the periodicity in the geometry-dependent raster pattern. These characteristics can be captured in the frequency domain using the signal spectrogram, a representation of the frequency content over time. Defects will appear in the spectrogram, disrupting the healthy spectral response. To quantify healthy spectrograms, we use principal component (PC) decomposition to extract the features of these spectrograms as a set of nominal basis vectors. Anomaly detection is then performed by calculating the error between the original and reconstructed spectrogram vector by projection of the spectrogram PCs onto the nominal basis. The reconstruction error for anomalous signals is larger than that from healthy signals, which is then used for fault detection. A one-tailed statistical test is used to determine the fault detection threshold for the reconstruction error signal. This method is tested on three raster patterns and performs better than a comparative time-series thresholding method. We demonstrate that this time-frequency algorithm can detect both temporal faults (which occur at a single time instant) and spatial faults (such as those introduced by an improper sintering), differentiating them from nominal operation.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136295710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Percussion-based loosening detection method for multi-bolt structure using convolutional neural network DenseNet-CBAM 基于卷积神经网络DenseNet-CBAM的多螺栓结构冲击松动检测方法
2区 工程技术
Structural Health Monitoring-An International Journal Pub Date : 2023-10-10 DOI: 10.1177/14759217231182305
Chenfei Du, Jianhua Liu, Hao Gong, Jiayu Huang, Wentao Zhang
{"title":"Percussion-based loosening detection method for multi-bolt structure using convolutional neural network DenseNet-CBAM","authors":"Chenfei Du, Jianhua Liu, Hao Gong, Jiayu Huang, Wentao Zhang","doi":"10.1177/14759217231182305","DOIUrl":"https://doi.org/10.1177/14759217231182305","url":null,"abstract":"Threaded fasteners are widely applied in mechanical systems, providing the functions of connection, fastening, and sealing. However, loosening is vulnerable to occurring in harsh environment. The importance of loosening detection cannot be emphasized. Percussion-based loosening detection method has attracted much attention due to the convenience and low cost. However, the simultaneous loosening detection of multiple-threaded fasteners based on percussion method is still a challenging issue that needs to be addressed. This study proposes a novel multi-bolt loosening detection method combining percussion method, and deep learning. The method consists of three integrated modules, that is, signal preprocessing, loosening information enhancement, and loosening detection modules. In the first module, variational mode decomposition is used to decompose the original signal into a series of intrinsic mode function to eliminate the interference of noise. In the second module, compressive sampling matching pursuit is applied to represent the denoised signal sparsely, and the sparse signal is fused with the denoised signal to enhance loosening information in the signal. Last, DenseNet-CBAM network structure combining attention mechanism is proposed for multiple classification task. Experimental results showed that the proposed method achieved the detection accuracy of more than 97% in three different types of mechanical structures with multiple-threaded fasteners, indicating its great potentials in engineering applications.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136357953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信