{"title":"基于柔度矩阵对角矩阵变化率的桥梁支座脱离识别:室内物理模拟实验","authors":"Shiji Ma, Lan Qiao, Qingwen Li","doi":"10.1177/14759217231194222","DOIUrl":null,"url":null,"abstract":"The disengagement of bridge bearings is a pervasive issue encountered in the realm of bridges, which can potentially lead to changes in operational circumstances, diminished longevity, and compromised traffic safety. The current methods employed for detecting such disconnections primarily rely on force sensors, cameras, and acceleration sensors. However, their practical implementation on-site and effectiveness in accurately identifying disengagement require enhancement. To address the challenges associated with the installation and layout of conventional contact sensors, as well as the potential introduction of additional mass, a sophisticated “bridge-bearing disconnection detection system” has been devised. This innovative system is based on laser Doppler vibrometer technology, which eliminates the need for physical contact. The feasibility of employing non-contact laser Doppler vibration measurement technology in the detection of bridge-bearing disconnection has been successfully verified within the framework of this study. Furthermore, a comprehensive analysis of the sensitivity of key dynamic parameters, specifically natural frequencies and vibration modes, to bridge-bearing disengagement has been conducted. The verification process included evaluating the identification effectiveness of regularized combined absolute changes in vibration modes and flexibility matrix diagonal matrix change rate (FDMCR) under diverse working conditions simulating complete disconnection. This assessment involved using both finite element analysis and empirical measurements. The findings unequivocally demonstrate that the disconnection of bridge bearings results in a reduction in the natural frequencies for each mode order, with an observed cumulative effect. In addition, it is noteworthy that the vibration mode indices typically exhibit greater sensitivity toward the disconnection of outer bearings. By contrast, FDMCR demonstrates commendable positioning capabilities and exceptional noise resistance in identifying bridge-bearing disengagement. The empirical insights gleaned from these research findings hold significant value in terms of on-site identification of bridge-bearing disengagement, ultimately contributing to the preservation of bridges’ long-term operational integrity.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridge-bearing disengagement identification based on flexibility matrix diagonal matrix change rate: an indoor physical simulation experiment\",\"authors\":\"Shiji Ma, Lan Qiao, Qingwen Li\",\"doi\":\"10.1177/14759217231194222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The disengagement of bridge bearings is a pervasive issue encountered in the realm of bridges, which can potentially lead to changes in operational circumstances, diminished longevity, and compromised traffic safety. The current methods employed for detecting such disconnections primarily rely on force sensors, cameras, and acceleration sensors. However, their practical implementation on-site and effectiveness in accurately identifying disengagement require enhancement. To address the challenges associated with the installation and layout of conventional contact sensors, as well as the potential introduction of additional mass, a sophisticated “bridge-bearing disconnection detection system” has been devised. This innovative system is based on laser Doppler vibrometer technology, which eliminates the need for physical contact. The feasibility of employing non-contact laser Doppler vibration measurement technology in the detection of bridge-bearing disconnection has been successfully verified within the framework of this study. Furthermore, a comprehensive analysis of the sensitivity of key dynamic parameters, specifically natural frequencies and vibration modes, to bridge-bearing disengagement has been conducted. The verification process included evaluating the identification effectiveness of regularized combined absolute changes in vibration modes and flexibility matrix diagonal matrix change rate (FDMCR) under diverse working conditions simulating complete disconnection. This assessment involved using both finite element analysis and empirical measurements. The findings unequivocally demonstrate that the disconnection of bridge bearings results in a reduction in the natural frequencies for each mode order, with an observed cumulative effect. In addition, it is noteworthy that the vibration mode indices typically exhibit greater sensitivity toward the disconnection of outer bearings. By contrast, FDMCR demonstrates commendable positioning capabilities and exceptional noise resistance in identifying bridge-bearing disengagement. The empirical insights gleaned from these research findings hold significant value in terms of on-site identification of bridge-bearing disengagement, ultimately contributing to the preservation of bridges’ long-term operational integrity.\",\"PeriodicalId\":51184,\"journal\":{\"name\":\"Structural Health Monitoring-An International Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Health Monitoring-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14759217231194222\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14759217231194222","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Bridge-bearing disengagement identification based on flexibility matrix diagonal matrix change rate: an indoor physical simulation experiment
The disengagement of bridge bearings is a pervasive issue encountered in the realm of bridges, which can potentially lead to changes in operational circumstances, diminished longevity, and compromised traffic safety. The current methods employed for detecting such disconnections primarily rely on force sensors, cameras, and acceleration sensors. However, their practical implementation on-site and effectiveness in accurately identifying disengagement require enhancement. To address the challenges associated with the installation and layout of conventional contact sensors, as well as the potential introduction of additional mass, a sophisticated “bridge-bearing disconnection detection system” has been devised. This innovative system is based on laser Doppler vibrometer technology, which eliminates the need for physical contact. The feasibility of employing non-contact laser Doppler vibration measurement technology in the detection of bridge-bearing disconnection has been successfully verified within the framework of this study. Furthermore, a comprehensive analysis of the sensitivity of key dynamic parameters, specifically natural frequencies and vibration modes, to bridge-bearing disengagement has been conducted. The verification process included evaluating the identification effectiveness of regularized combined absolute changes in vibration modes and flexibility matrix diagonal matrix change rate (FDMCR) under diverse working conditions simulating complete disconnection. This assessment involved using both finite element analysis and empirical measurements. The findings unequivocally demonstrate that the disconnection of bridge bearings results in a reduction in the natural frequencies for each mode order, with an observed cumulative effect. In addition, it is noteworthy that the vibration mode indices typically exhibit greater sensitivity toward the disconnection of outer bearings. By contrast, FDMCR demonstrates commendable positioning capabilities and exceptional noise resistance in identifying bridge-bearing disengagement. The empirical insights gleaned from these research findings hold significant value in terms of on-site identification of bridge-bearing disengagement, ultimately contributing to the preservation of bridges’ long-term operational integrity.
期刊介绍:
Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.