Journal of Modern Dynamics最新文献

筛选
英文 中文
Tri-Coble surfaces and their automorphisms Tri-Coble曲面及其自同构
IF 1.1 1区 数学
Journal of Modern Dynamics Pub Date : 2020-03-03 DOI: 10.3934/JMD.2021008
John Lesieutre
{"title":"Tri-Coble surfaces and their automorphisms","authors":"John Lesieutre","doi":"10.3934/JMD.2021008","DOIUrl":"https://doi.org/10.3934/JMD.2021008","url":null,"abstract":"We construct some positive entropy automorphisms of rational surfaces with no periodic curves. The surfaces in question, which we term tri-Coble surfaces, are blow-ups of the projective plane at 12 points which have contractions down to three different Coble surfaces. The automorphisms arise as compositions of lifts of Bertini involutions from certain degree 1 weak del Pezzo surfaces.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41589835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
On the set of points of zero torsion for negative-torsion maps of the annulus 环空负扭转映射的零扭转点集
IF 1.1 1区 数学
Journal of Modern Dynamics Pub Date : 2020-02-27 DOI: 10.3934/jmd.2022017
Anna Florio
{"title":"On the set of points of zero torsion for negative-torsion maps of the annulus","authors":"Anna Florio","doi":"10.3934/jmd.2022017","DOIUrl":"https://doi.org/10.3934/jmd.2022017","url":null,"abstract":"For negative-torsion maps on the annulus we show that on every $mathcal{C}^1$ essential curve there is at least one point of zero torsion. As an outcome, we deduce that the Hausdorff dimension of the set of points of zero torsion is greater or equal 1. As a byproduct, we obtain a Birkhoff's-theorem-like result for $mathcal{C}^1$ essential curves in the framework of negative-torsion maps.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46385664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Generic measures for translation surface flows 平动表面流动的一般措施
IF 1.1 1区 数学
Journal of Modern Dynamics Pub Date : 2020-02-21 DOI: 10.3934/jmd.2022014
H. Masur
{"title":"Generic measures for translation surface flows","authors":"H. Masur","doi":"10.3934/jmd.2022014","DOIUrl":"https://doi.org/10.3934/jmd.2022014","url":null,"abstract":"<p style='text-indent:20px;'>We consider straight line flows on a translation surface that are minimal but not uniquely ergodic. We give bounds for the number of generic invariant probability measures.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44134621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eigenvalue gaps for hyperbolic groups and semigroups 双曲群和半群的特征值间隙
IF 1.1 1区 数学
Journal of Modern Dynamics Pub Date : 2020-02-17 DOI: 10.3934/jmd.2022008
Fanny Kassel, R. Potrie
{"title":"Eigenvalue gaps for hyperbolic groups and semigroups","authors":"Fanny Kassel, R. Potrie","doi":"10.3934/jmd.2022008","DOIUrl":"https://doi.org/10.3934/jmd.2022008","url":null,"abstract":"<p style='text-indent:20px;'>Given a locally constant linear cocycle over a subshift of finite type, we show that the existence of a uniform gap between the <inline-formula><tex-math id=\"M1\">begin{document}$ i^text{th} $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M2\">begin{document}$ (i+1)^text{th} $end{document}</tex-math></inline-formula> Lyapunov exponents for all invariant measures implies the existence of a dominated splitting of index <inline-formula><tex-math id=\"M3\">begin{document}$ i $end{document}</tex-math></inline-formula>. We establish a similar result for sofic subshifts coming from word hyperbolic groups, in relation with Anosov representations of such groups. We discuss the case of finitely generated semigroups, and propose a notion of Anosov representation in this setting.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45658136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces s<s:1> bastien Gouëzel在极限定理和加权Banach空间上的工作
IF 1.1 1区 数学
Journal of Modern Dynamics Pub Date : 2020-01-01 DOI: 10.3934/jmd.2020014
D. Dolgopyat
{"title":"The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces","authors":"D. Dolgopyat","doi":"10.3934/jmd.2020014","DOIUrl":"https://doi.org/10.3934/jmd.2020014","url":null,"abstract":"We review recent advances in the spectral approach to studying statistical properties of dynamical systems highlighting, in particular, the role played by Sebastien Gouezel.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70084625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Rigidity of a class of smooth singular flows on begin{document}$ mathbb{T}^2 $end{document} Rigidity of a class of smooth singular flows on begin{document}$ mathbb{T}^2 $end{document}
IF 1.1 1区 数学
Journal of Modern Dynamics Pub Date : 2020-01-01 DOI: 10.3934/jmd.2020002
Changguang Dong, Adam Kanigowski
{"title":"Rigidity of a class of smooth singular flows on begin{document}$ mathbb{T}^2 $end{document}","authors":"Changguang Dong, Adam Kanigowski","doi":"10.3934/jmd.2020002","DOIUrl":"https://doi.org/10.3934/jmd.2020002","url":null,"abstract":"We study joining rigidity in the class of von Neumann flows with one singularity. They are given by a smooth vector field begin{document}$ mathscr{X} $end{document} on begin{document}$ mathbb{T}^2setminus {a} $end{document} , where begin{document}$ mathscr{X} $end{document} is not defined at begin{document}$ ain mathbb{T}^2 $end{document} and begin{document}$ mathscr{X} $end{document} has one critical point which is a center. It follows that the phase space can be decomposed into a (topological disc) begin{document}$ D_mathscr{X} $end{document} and an ergodic component begin{document}$ E_mathscr{X} = mathbb{T}^2setminus D_mathscr{X} $end{document} . Let begin{document}$ omega_mathscr{X} $end{document} be the 1-form associated to begin{document}$ mathscr{X} $end{document} . We show that if begin{document}$ |int_{E_{mathscr{X}_1}}domega_{mathscr{X}_1}|neq |int_{E_{mathscr{X}_2}}domega_{mathscr{X}_2}| $end{document} , then the corresponding flows begin{document}$ (v_t^{mathscr{X}_1}) $end{document} and begin{document}$ (v_t^{mathscr{X}_2}) $end{document} are disjoint. It also follows that for every begin{document}$ mathscr{X} $end{document} there is a uniquely associated frequency begin{document}$ alpha = alpha_{mathscr{X}}in mathbb{T} $end{document} . We show that for a full measure set of begin{document}$ alphain mathbb{T} $end{document} the class of smooth time changes of begin{document}$ (v_t^mathscr{X_ alpha}) $end{document} is joining rigid, i.e., every two smooth time changes are either cohomologous or disjoint. This gives a natural class of flows for which the answer to [ 15 ,Problem 3] is positive.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70084554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lyapunov instability in KAM stable Hamiltonians with two degrees of freedom 两自由度KAM稳定哈密顿系统的Lyapunov不稳定性
IF 1.1 1区 数学
Journal of Modern Dynamics Pub Date : 2019-12-30 DOI: 10.3934/jmd.2023010
Frank Trujillo
{"title":"Lyapunov instability in KAM stable Hamiltonians with two degrees of freedom","authors":"Frank Trujillo","doi":"10.3934/jmd.2023010","DOIUrl":"https://doi.org/10.3934/jmd.2023010","url":null,"abstract":"For a fixed frequency vector $omega in mathbb{R}^2 , setminus , lbrace 0 rbrace$ obeying $omega_1 omega_2 < 0$ we show the existence of Gevrey-smooth Hamiltonians, arbitrarily close to an integrable Kolmogorov non-degenerate analytic Hamiltonian, having a Lyapunov unstable elliptic equilibrium with frequency $omega$. In particular, the elliptic fixed points thus constructed will be KAM stable, i.e. accumulated by invariant tori whose Lebesgue density tend to one in the neighbourhood of the point and whose frequencies cover a set of positive measure. \u0000Similar examples for near-integrable Hamiltonians in action-angle coordinates in the neighbourhood of a Lagragian invariant torus with arbitrary rotation vector are also given in this work.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45013541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Lyapunov spectrum rigidity of nilmanifold automorphisms 零流形自同构的局部Lyapunov谱刚性
IF 1.1 1区 数学
Journal of Modern Dynamics Pub Date : 2019-11-18 DOI: 10.3934/JMD.2021003
Jonathan DeWitt
{"title":"Local Lyapunov spectrum rigidity of nilmanifold automorphisms","authors":"Jonathan DeWitt","doi":"10.3934/JMD.2021003","DOIUrl":"https://doi.org/10.3934/JMD.2021003","url":null,"abstract":"We study the regularity of a conjugacy between an Anosov automorphism $L$ of a nilmanifold $N/Gamma$ and a volume-preserving, $C^1$-small perturbation $f$. We say that $L$ is locally Lyapunov spectrum rigid if this conjugacy is $C^{1+}$ whenever $f$ is $C^{1+}$ and has the same volume Lyapunov spectrum as $L$. For $L$ with simple spectrum, we show that local Lyapunov spectrum rigidity is equivalent to $L$ satisfying both an irreducibility condition and an ordering condition on its Lyapunov exponents.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41386825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Common preperiodic points for quadratic polynomials 二次多项式的公共周期前点
IF 1.1 1区 数学
Journal of Modern Dynamics Pub Date : 2019-11-06 DOI: 10.3934/jmd.2022012
Laura Demarco, Holly Krieger, Hexi Ye
{"title":"Common preperiodic points for quadratic polynomials","authors":"Laura Demarco, Holly Krieger, Hexi Ye","doi":"10.3934/jmd.2022012","DOIUrl":"https://doi.org/10.3934/jmd.2022012","url":null,"abstract":"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\"M1\">begin{document}$ f_c(z) = z^2+c $end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\"M2\">begin{document}$ c in {mathbb C} $end{document}</tex-math></inline-formula>. We show there exists a uniform upper bound on the number of points in <inline-formula><tex-math id=\"M3\">begin{document}$ {mathbb P}^1( {mathbb C}) $end{document}</tex-math></inline-formula> that can be preperiodic for both <inline-formula><tex-math id=\"M4\">begin{document}$ f_{c_1} $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M5\">begin{document}$ f_{c_2} $end{document}</tex-math></inline-formula>, for any pair <inline-formula><tex-math id=\"M6\">begin{document}$ c_1not = c_2 $end{document}</tex-math></inline-formula> in <inline-formula><tex-math id=\"M7\">begin{document}$ {mathbb C} $end{document}</tex-math></inline-formula>. The proof combines arithmetic ingredients with complex-analytic: we estimate an adelic energy pairing when the parameters lie in <inline-formula><tex-math id=\"M8\">begin{document}$ overline{mathbb{Q}} $end{document}</tex-math></inline-formula>, building on the quantitative arithmetic equidistribution theorem of Favre and Rivera-Letelier, and we use distortion theorems in complex analysis to control the size of the intersection of distinct Julia sets. The proofs are effective, and we provide explicit constants for each of the results.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48391614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
On the non-monotonicity of entropy for a class of real quadratic rational maps 关于一类实二次有理映射的熵的非单调性
IF 1.1 1区 数学
Journal of Modern Dynamics Pub Date : 2019-10-10 DOI: 10.3934/JMD.2020008
Khashayar Filom, K. Pilgrim
{"title":"On the non-monotonicity of entropy for a class of real quadratic rational maps","authors":"Khashayar Filom, K. Pilgrim","doi":"10.3934/JMD.2020008","DOIUrl":"https://doi.org/10.3934/JMD.2020008","url":null,"abstract":"We prove that the entropy function on the moduli space of real quadratic rational maps is not monotonic by exhibiting a continuum of disconnected level sets. This entropy behavior is in stark contrast with the case of polynomial maps, and establishes a conjecture on the failure of monotonicity for bimodal real quadratic rational maps of shape begin{document}$ (+-+) $end{document} which was posed in [ 10 ] based on experimental evidence.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43207775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信