{"title":"On the set of points of zero torsion for negative-torsion maps of the annulus","authors":"Anna Florio","doi":"10.3934/jmd.2022017","DOIUrl":null,"url":null,"abstract":"For negative-torsion maps on the annulus we show that on every $\\mathcal{C}^1$ essential curve there is at least one point of zero torsion. As an outcome, we deduce that the Hausdorff dimension of the set of points of zero torsion is greater or equal 1. As a byproduct, we obtain a Birkhoff's-theorem-like result for $\\mathcal{C}^1$ essential curves in the framework of negative-torsion maps.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022017","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
For negative-torsion maps on the annulus we show that on every $\mathcal{C}^1$ essential curve there is at least one point of zero torsion. As an outcome, we deduce that the Hausdorff dimension of the set of points of zero torsion is greater or equal 1. As a byproduct, we obtain a Birkhoff's-theorem-like result for $\mathcal{C}^1$ essential curves in the framework of negative-torsion maps.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.