{"title":"二次多项式的公共周期前点","authors":"Laura Demarco, Holly Krieger, Hexi Ye","doi":"10.3934/jmd.2022012","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\"M1\">\\begin{document}$ f_c(z) = z^2+c $\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\"M2\">\\begin{document}$ c \\in {\\mathbb C} $\\end{document}</tex-math></inline-formula>. We show there exists a uniform upper bound on the number of points in <inline-formula><tex-math id=\"M3\">\\begin{document}$ {\\mathbb P}^1( {\\mathbb C}) $\\end{document}</tex-math></inline-formula> that can be preperiodic for both <inline-formula><tex-math id=\"M4\">\\begin{document}$ f_{c_1} $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M5\">\\begin{document}$ f_{c_2} $\\end{document}</tex-math></inline-formula>, for any pair <inline-formula><tex-math id=\"M6\">\\begin{document}$ c_1\\not = c_2 $\\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id=\"M7\">\\begin{document}$ {\\mathbb C} $\\end{document}</tex-math></inline-formula>. The proof combines arithmetic ingredients with complex-analytic: we estimate an adelic energy pairing when the parameters lie in <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\overline{\\mathbb{Q}} $\\end{document}</tex-math></inline-formula>, building on the quantitative arithmetic equidistribution theorem of Favre and Rivera-Letelier, and we use distortion theorems in complex analysis to control the size of the intersection of distinct Julia sets. The proofs are effective, and we provide explicit constants for each of the results.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Common preperiodic points for quadratic polynomials\",\"authors\":\"Laura Demarco, Holly Krieger, Hexi Ye\",\"doi\":\"10.3934/jmd.2022012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ f_c(z) = z^2+c $\\\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ c \\\\in {\\\\mathbb C} $\\\\end{document}</tex-math></inline-formula>. We show there exists a uniform upper bound on the number of points in <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ {\\\\mathbb P}^1( {\\\\mathbb C}) $\\\\end{document}</tex-math></inline-formula> that can be preperiodic for both <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ f_{c_1} $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ f_{c_2} $\\\\end{document}</tex-math></inline-formula>, for any pair <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ c_1\\\\not = c_2 $\\\\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ {\\\\mathbb C} $\\\\end{document}</tex-math></inline-formula>. The proof combines arithmetic ingredients with complex-analytic: we estimate an adelic energy pairing when the parameters lie in <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ \\\\overline{\\\\mathbb{Q}} $\\\\end{document}</tex-math></inline-formula>, building on the quantitative arithmetic equidistribution theorem of Favre and Rivera-Letelier, and we use distortion theorems in complex analysis to control the size of the intersection of distinct Julia sets. The proofs are effective, and we provide explicit constants for each of the results.</p>\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2022012\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022012","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18
摘要
Let \begin{document}$ f_c(z) = z^2+c $\end{document} for \begin{document}$ c \in {\mathbb C} $\end{document}. We show there exists a uniform upper bound on the number of points in \begin{document}$ {\mathbb P}^1( {\mathbb C}) $\end{document} that can be preperiodic for both \begin{document}$ f_{c_1} $\end{document} and \begin{document}$ f_{c_2} $\end{document}, for any pair \begin{document}$ c_1\not = c_2 $\end{document} in \begin{document}$ {\mathbb C} $\end{document}. The proof combines arithmetic ingredients with complex-analytic: we estimate an adelic energy pairing when the parameters lie in \begin{document}$ \overline{\mathbb{Q}} $\end{document}, building on the quantitative arithmetic equidistribution theorem of Favre and Rivera-Letelier, and we use distortion theorems in complex analysis to control the size of the intersection of distinct Julia sets. The proofs are effective, and we provide explicit constants for each of the results.
Common preperiodic points for quadratic polynomials
Let \begin{document}$ f_c(z) = z^2+c $\end{document} for \begin{document}$ c \in {\mathbb C} $\end{document}. We show there exists a uniform upper bound on the number of points in \begin{document}$ {\mathbb P}^1( {\mathbb C}) $\end{document} that can be preperiodic for both \begin{document}$ f_{c_1} $\end{document} and \begin{document}$ f_{c_2} $\end{document}, for any pair \begin{document}$ c_1\not = c_2 $\end{document} in \begin{document}$ {\mathbb C} $\end{document}. The proof combines arithmetic ingredients with complex-analytic: we estimate an adelic energy pairing when the parameters lie in \begin{document}$ \overline{\mathbb{Q}} $\end{document}, building on the quantitative arithmetic equidistribution theorem of Favre and Rivera-Letelier, and we use distortion theorems in complex analysis to control the size of the intersection of distinct Julia sets. The proofs are effective, and we provide explicit constants for each of the results.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.