{"title":"Lyapunov instability in KAM stable Hamiltonians with two degrees of freedom","authors":"Frank Trujillo","doi":"10.3934/jmd.2023010","DOIUrl":null,"url":null,"abstract":"For a fixed frequency vector $\\omega \\in \\mathbb{R}^2 \\, \\setminus \\, \\lbrace 0 \\rbrace$ obeying $\\omega_1 \\omega_2 < 0$ we show the existence of Gevrey-smooth Hamiltonians, arbitrarily close to an integrable Kolmogorov non-degenerate analytic Hamiltonian, having a Lyapunov unstable elliptic equilibrium with frequency $\\omega$. In particular, the elliptic fixed points thus constructed will be KAM stable, i.e. accumulated by invariant tori whose Lebesgue density tend to one in the neighbourhood of the point and whose frequencies cover a set of positive measure. \nSimilar examples for near-integrable Hamiltonians in action-angle coordinates in the neighbourhood of a Lagragian invariant torus with arbitrary rotation vector are also given in this work.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2023010","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a fixed frequency vector $\omega \in \mathbb{R}^2 \, \setminus \, \lbrace 0 \rbrace$ obeying $\omega_1 \omega_2 < 0$ we show the existence of Gevrey-smooth Hamiltonians, arbitrarily close to an integrable Kolmogorov non-degenerate analytic Hamiltonian, having a Lyapunov unstable elliptic equilibrium with frequency $\omega$. In particular, the elliptic fixed points thus constructed will be KAM stable, i.e. accumulated by invariant tori whose Lebesgue density tend to one in the neighbourhood of the point and whose frequencies cover a set of positive measure.
Similar examples for near-integrable Hamiltonians in action-angle coordinates in the neighbourhood of a Lagragian invariant torus with arbitrary rotation vector are also given in this work.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.