EcographyPub Date : 2024-07-22DOI: 10.1111/ecog.07415
Javed Riaz, Rachael A. Orben, Amandine Gamble, Paulo Catry, José P. Granadeiro, Letizia Campioni, Megan Tierney, Alastair M. M. Baylis
{"title":"Coastal connectivity of marine predators over the Patagonian Shelf during the highly pathogenic avian influenza outbreak","authors":"Javed Riaz, Rachael A. Orben, Amandine Gamble, Paulo Catry, José P. Granadeiro, Letizia Campioni, Megan Tierney, Alastair M. M. Baylis","doi":"10.1111/ecog.07415","DOIUrl":"10.1111/ecog.07415","url":null,"abstract":"<p>Animal movement and population connectivity are key areas of uncertainty in efforts to understand and predict the spread of infectious disease. The emergence of highly pathogenic avian influenza (HPAI) in South America poses a significant threat to globally significant populations of colonial breeding marine predators in the South Atlantic. Yet, there is a poor understanding of which species or migratory pathways may facilitate disease spread. Compiling one of the largest available animal tracking datasets in the South Atlantic, we examine connectivity and inter-population mixing for colonial breeding marine predators tagged at the Falkland Islands. We reveal extensive connectivity for three regionally dominant and gregarious species over the Patagonian Shelf. Black-browed albatrosses (BBA), South American fur seals (SAFS) and Magellanic penguins (MAG) used coastal waters along the Atlantic coast of South America (Argentina and Uruguay). These behaviours were recorded at or in close proximity to breeding colonies and haul-out areas with dense aggregations of marine predators. Transit times to and from the Falkland Islands to the continental coast ranged from 0.2–70 days, with 84% of animals making this transit within 4 days - a conservative estimate for HPAI infectious period. Our findings demonstrate BBA, SAFS and MAG connectivity between the Falkland Islands and mainland South America over an expansive spatial network and numerous pathways, which has implications for infectious disease persistence, transmission and spread. This information is vital in supporting HPAI disease surveillance, risk assessment and marine management efforts across the region.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07415","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcographyPub Date : 2024-07-22DOI: 10.1111/ecog.07460
Donald DeAngelis, Linhao Xu
{"title":"Feedbacks: a new synthesis of causal loops across ecology","authors":"Donald DeAngelis, Linhao Xu","doi":"10.1111/ecog.07460","DOIUrl":"10.1111/ecog.07460","url":null,"abstract":"<p>Feedbacks are the basic linkages of living systems. In organisms, they regulate the processes of growth and homeostasis, as well as their interactions with their world. Feedback, which Judson (1980) called ‘one of the chief themes of scientific understanding,' is equally important in ecological systems. The ecological literature is rich in papers dealing with the role of feedback in various phenomena. However, we know of no comprehensive synthesis of feedbacks in ecology. Pichon et al. (2024) accomplish this, and for the first time show that ecological feedbacks can be categorized in terms of a small number of fundamental attributes. The paper brings the array of different types of feedbacks into a manageable order, providing not only the relevant theoretical framework but also guidance on methods for applying understanding to practical issues.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07460","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcographyPub Date : 2024-07-22DOI: 10.1111/ecog.07234
Aurore Receveur, Fabien Leprieur, Kari E. Ellingsen, David Keith, Kristin M. Kleisner, Matthew McLean, Bastien Mérigot, Katherine E. Mills, David Mouillot, Marta Rufino, Isaac Trindade-Santos, Gert Van Hoey, Camille Albouy, Arnaud Auber
{"title":"Long-term changes in taxonomic and functional composition of European marine fish communities","authors":"Aurore Receveur, Fabien Leprieur, Kari E. Ellingsen, David Keith, Kristin M. Kleisner, Matthew McLean, Bastien Mérigot, Katherine E. Mills, David Mouillot, Marta Rufino, Isaac Trindade-Santos, Gert Van Hoey, Camille Albouy, Arnaud Auber","doi":"10.1111/ecog.07234","DOIUrl":"10.1111/ecog.07234","url":null,"abstract":"<p>Evidence of large-scale biodiversity degradation in marine ecosystems has been reported worldwide, yet most research has focused on few species of interest or on limited spatiotemporal scales. Here we assessed the spatial and temporal changes in the taxonomic and functional composition of fish communities in European seas over the last 25 years (1994–2019). We then explored how these community changes were linked to environmental gradients and fishing pressure. We show that the spatial variation in fish species composition is more than two times higher than the temporal variation, with a marked spatial continuum in taxonomic composition and a more homogenous pattern in functional composition. The regions warming the fastest are experiencing an increasing dominance and total abundance of r-strategy fish species (lower age of maturity). Conversely, regions warming more slowly show an increasing dominance and total abundance of K-strategy species (high trophic level and late reproduction). Among the considered environmental variables, sea surface temperature, surface salinity and chlorophyll-a most consistently influenced communities' spatial patterns, while bottom temperature and oxygen had the most consistent influence on temporal patterns. Changes in communities' functional composition were more closely related to environmental conditions than taxonomic changes. Our study demonstrates the importance of integrating community-level species traits across multi-decadal scales and across a large region to better capture and understand ecosystem-wide responses and provides a different lens on community dynamics that could be used to support sustainable fisheries management.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 9","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07234","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcographyPub Date : 2024-07-18DOI: 10.1111/ecog.07366
Sarah R. Weiskopf, Susannah B. Lerman, Forest Isbell, Toni Lyn Morelli
{"title":"Biodiversity promotes urban ecosystem functioning","authors":"Sarah R. Weiskopf, Susannah B. Lerman, Forest Isbell, Toni Lyn Morelli","doi":"10.1111/ecog.07366","DOIUrl":"10.1111/ecog.07366","url":null,"abstract":"<p>The proportion of people living in urban areas is growing globally. Understanding how to manage urban biodiversity, ecosystem functions, and ecosystem services is becoming more important. Biodiversity can increase ecosystem functioning in non-urban systems. However, few studies have reviewed the relationship between biodiversity and ecosystem functioning in urban areas, which differ in species compositions, abiotic environments, food webs, and turnover rates. We reviewed evidence of biodiversity–ecosystem functioning relationships in urban environments and assessed factors that influence the relationship direction. Based on 70 studies, relationships between biodiversity and ecosystem functioning were more positive than negative in urban areas, especially for pollination and nutrient cycling and retention. Surprisingly, positive and negative relationships between biodiversity and biomass production and storage were equally not statistically different, perhaps due to extensive plant management in urban areas. The number of studies and geographic coverage of our review was still insufficient to provide a general predictive framework for when biodiversity positively impacts ecosystem functioning. We identify gaps and opportunities to improve urban biodiversity–ecosystem functioning research and discuss how our findings can improve urban green space management.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 9","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07366","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcographyPub Date : 2024-07-18DOI: 10.1111/ecog.07240
Alfonso Allen‐Perkins, Maddi Artamendi, Daniel Montoya, Encarnación Rubio, Ainhoa Magrach
{"title":"Untangling the plant reproductive success of changing community composition and pollinator foraging choices","authors":"Alfonso Allen‐Perkins, Maddi Artamendi, Daniel Montoya, Encarnación Rubio, Ainhoa Magrach","doi":"10.1111/ecog.07240","DOIUrl":"https://doi.org/10.1111/ecog.07240","url":null,"abstract":"Pollinator choices when selecting flowers for nectar or pollen collection are crucial in determining the effectiveness of pollination services provided to plants. From the plant's perspective, this effectiveness is a phenomenon shaped by factors at both the species‐ (e.g. pollinator density and flower morphology) and community‐level, including pollinator diversity and plant competition for pollinators. At the species level, individual pollinator effectiveness is influenced by foraging choices, plant identity, and the resulting pollen flow within and between plant species. In natural ecosystems, these species coexist within a complex community, where various interactions can modify foraging choices and alter pollen flows, giving rise to community‐level effectiveness, a less explored aspect of pollinator effectiveness. This study investigates the drivers of individual pollinator foraging choices across two study areas and two flowering seasons. It also assesses the community‐level effectiveness of pollination services received by different plant species, considering indirect interactions between plants through shared pollinators and evaluating their impact on plant reproductive success. Our results show that the determinants of pollinator foraging choices are consistent across different habitats, with floral constancy and flower abundance playing pivotal roles across all species and sites. Foraging choices can shift throughout the flowering season as plant and pollinator composition changes, significantly impacting pollination effectiveness. The overlap in pollination service use by individuals of the same plant species decreases their fruit set, whereas sharing pollinator services with individuals of other plant species increases fruit set. Our results support significant, positive biodiversity–ecosystem functioning associations driven by both plant and pollinator species richness, suggesting that the overlap in pollination service use by different plant species fosters facilitative interactions rather than competition. This is likely influenced by more stable pollination supplies under high plant species diversity conditions and the existence of mechanisms to mitigate the negative impacts of heterospecific pollen deposition.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"9 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141726255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcographyPub Date : 2024-07-16DOI: 10.1111/ecog.06817
Wendy A. M. Jesse, Jacintha Ellers, Jocelyn E. Behm, Gabriel C. Costa, S. Blair Hedges, Matthew R. Helmus
{"title":"Elevated human impact on islands increases the introduction and extinction status of native insular reptiles","authors":"Wendy A. M. Jesse, Jacintha Ellers, Jocelyn E. Behm, Gabriel C. Costa, S. Blair Hedges, Matthew R. Helmus","doi":"10.1111/ecog.06817","DOIUrl":"10.1111/ecog.06817","url":null,"abstract":"<p>In the Anthropocene, the ranges of introduced species are expanding, while extinction-prone species are contracting. Introductions and extinctions are caused by how species respond to human impacts, but it is unknown why the ranges of some species expand and some contract. Here, we test whether this opposite response of human impact is due to introduced and extinction-prone species falling at opposite ends of geographic, evolutionary, or ecological trait continua. We constructed a database of native range maps, traits, phylogenetic relationships, and the introduction and extinction-prone status of squamate reptiles with ranges native to the Western Hemisphere. Across > 3000 snake and lizard species (88% of known native squamates), 142 had been introduced elsewhere and 483 were extinction-prone (i.e. vulnerable, endangered, critically endangered, extinct in the wild, extinct). To explain variation in status, we first tested if the same human-impacted regions in the Americas contained the native ranges of species of either status. Second, we tested for phylogenetic signal in species status. Finally, we tested the explanatory power of multiple trait continua. The native ranges of introduced and extinction-prone reptiles were clustered in island regions with high human impact versus mainland regions with lower human impact. Phylogenetic signal was weak for status, but introduced and extinction-prone species were clustered in different clades. All geographic and ecological traits that explained each status supported the opposite ends hypothesis. Introduced species had larger, edgier ranges, while extinction-prone species had smaller, simpler ranges. Introduced species were mostly herbivorous/omnivorous, while extinction-prone species were mostly carnivorous. Introduced species produced larger clutches, while extinction-prone species had smaller body sizes. In the Anthropocene, the native ranges of introduced and extinction-prone species are in the same human-impacted regions where trait continua, having opposite effects, determine whether species ranges expand or contract in the continuing face of global change.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.06817","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcographyPub Date : 2024-07-16DOI: 10.1111/ecog.07377
Alice Rosen, Fabian Jörg Fischer, David A. Coomes, Toby D. Jackson, Gregory P. Asner, Tommaso Jucker
{"title":"Tracking shifts in forest structural complexity through space and time in human-modified tropical landscapes","authors":"Alice Rosen, Fabian Jörg Fischer, David A. Coomes, Toby D. Jackson, Gregory P. Asner, Tommaso Jucker","doi":"10.1111/ecog.07377","DOIUrl":"10.1111/ecog.07377","url":null,"abstract":"<p>Habitat structural complexity is an emergent property of ecosystems that directly shapes their biodiversity, functioning and resilience to disturbance. Yet despite its importance, we continue to lack consensus on how best to define structural complexity, nor do we have a generalised approach to measure habitat complexity across ecosystems. To bridge this gap, here we adapt a geometric framework developed to quantify the surface complexity of coral reefs and apply it to the canopies of tropical rainforests. Using high-resolution, repeat-acquisition airborne laser scanning data collected over 450 km<sup>2</sup> of human-modified tropical landscapes in Borneo, we generated 3D canopy height models of forests at varying stages of recovery from logging. We then tested whether the geometric framework of habitat complexity – which characterises 3D surfaces according to their height range, rugosity and fractal dimension – was able to detect how both human and natural disturbances drive variation in canopy structure through space and time across these landscapes. We found that together, these three metrics of surface complexity captured major differences in canopy 3D structure between highly degraded, selectively logged and old-growth forests. Moreover, the three metrics were able to track distinct temporal patterns of structural recovery following logging and wind disturbance. However, in the process we also uncovered several important conceptual and methodological limitations with the geometric framework of habitat complexity. We found that fractal dimension was highly sensitive to small variations in data inputs and was ecologically counteractive (e.g. higher fractal dimension in oil palm plantations than old-growth forests), while rugosity and height range were tightly correlated (r = 0.75) due to their strong dependency on maximum tree height. Our results suggest that forest structural complexity cannot be summarised using these three descriptors alone, as they overlook key features of canopy vertical and horizontal structure that arise from the way trees fill 3D space.</p><p>Keywords: Forest disturbance, LiDAR, logging, recovery, remote sensing, structural complexity</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07377","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcographyPub Date : 2024-07-10DOI: 10.1111/ecog.06780
Martha W. Zillig, Wesley Brooks, Erica Fleishman
{"title":"Shifts in elevational distributions of montane birds in an arid ecosystem","authors":"Martha W. Zillig, Wesley Brooks, Erica Fleishman","doi":"10.1111/ecog.06780","DOIUrl":"10.1111/ecog.06780","url":null,"abstract":"<p>Montane species are generally predicted to respond to climate change via upslope movement. Elevational range shifts of birds rarely have been examined in arid regions. Here, we examine shifts in the elevational distributions of breeding birds from two regions of the Great Basin, a desert in the western USA, over 10 to 20 years. We collected data annually from 2001 to 2020, a relatively long and consistent time series that is uncommon in research on distributional shifts. We used single-species occupancy models of 32 bird species to examine shifts along the full elevational gradient (1650–3200 m a.s.l.) and within the lowest and highest edges (25%) of the gradient. We then conducted simulations to test whether population stochasticity could confound inferences about shifts. We examined whether temperature, precipitation, and primary productivity (normalized difference vegetation index) were associated with occupancy and shifts. The elevational distributions of 23 species shifted, and simulations indicated that shifts in the distributions of 18 species were unlikely to be stochastic. The majority of shifts in the western Great Basin were downslope, whereas those in the central Great Basin were upslope. More shifts occurred at the edges of the elevational gradient than along the full gradient. Elevational shifts lacked a consistent climate-response signal, but those of some species appeared to follow changes in primary productivity. We found regional differences in elevational shifts and climate associations, and our work suggests that these desert bird populations may be relatively resilient to climate change.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 9","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.06780","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141584438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcographyPub Date : 2024-07-10DOI: 10.1111/ecog.07121
Joudellys Andrade-Silva, Fabrício B. Baccaro, Lívia P. Prado, Benoit Guénard, Jamie M. Kass, Dan L. Warren, Evan P. Economo, Rogério R. Silva
{"title":"Common ant species dominate morphospace: unraveling the morphological diversity in the Brazilian Amazon Basin","authors":"Joudellys Andrade-Silva, Fabrício B. Baccaro, Lívia P. Prado, Benoit Guénard, Jamie M. Kass, Dan L. Warren, Evan P. Economo, Rogério R. Silva","doi":"10.1111/ecog.07121","DOIUrl":"10.1111/ecog.07121","url":null,"abstract":"<p>Rare plant and vertebrate species have been documented to contribute disproportionately to the total morphological structure of species assemblages. These species often possess morphologically extreme traits and occupy the boundaries of morphological space. As rare species are at greater risk of extinction than more widely distributed species, human-induced disturbances can strongly affect ecosystem functions related to assemblage morphology. Here, we assess to what extent the distributions of ant morphological traits are supported by morphologically extreme species and how they are distributed among habitats in a global biodiversity hotspot, the Brazilian Amazon. We used a morphological database comprising 15 continuous morphological traits and 977 expert-validated ant species distributed across the Brazilian Amazon. We produced species range estimates using species distribution models or alpha hulls (when few records were available). Next, we conducted a principal components analysis to combine traits into a space with reduced dimensionality (morphospace). Then, we identified morphologically extreme species in this space and quantified their contributions to morphological diversity across different habitat types in the Brazilian Amazon Basin. We identified 114 morphologically extreme ant species across the Amazon ant morphospace. These species also accounted for a large percentage of morphospace filling, exceeding 99% representation in the most disturbed habitats in the Amazon. Our results suggest that a few morphologically extreme species capture most of the variation in ant morphology and, therefore, the spectrum of ecosystem functions performed by ants in the Brazilian Amazon Basin. Further, unlike in many other groups, these extreme morphologies were represented by the set of most common species. These results suggest greater functional redundancy and resilience in Brazilian Amazon ants, but more broadly, they contribute to our understanding of ecological processes that sustain ecosystem functions.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 11","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07121","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141584437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcographyPub Date : 2024-07-05DOI: 10.1111/ecog.07035
Kiarrah J. Smith, Jennifer C. Pierson, Maldwyn J. Evans, Iain J. Gordon, Adrian D. Manning
{"title":"Continental-scale identification and prioritisation of potential refugee species; a case study for rodents in Australia","authors":"Kiarrah J. Smith, Jennifer C. Pierson, Maldwyn J. Evans, Iain J. Gordon, Adrian D. Manning","doi":"10.1111/ecog.07035","DOIUrl":"10.1111/ecog.07035","url":null,"abstract":"<p>A species is expected to be most resilient to environmental change when it occurs across a broad diversity of habitats. However, there is often no visual representation of the past (i.e. prehistoric and historical) context for a species in the range maps published by national and global authorities. Therefore, it is easy to overlook the fact that many species once occupied a broader geographic range, or greater diversity of habitats. Such oversights hinder the effective conservation of species that have become restricted to a subset of their formerly occupied habitats. Here, we quantified the shifted baseline that may underpin some of the ecological misconceptions about species, and developed a rapid assessment method to aid the identification and prioritisation of ‘potential refugee species' (i.e. species that have become restricted to a subset of their formerly occupied niche). The assessment of potential refugee status is different from, but complementary to, the International Union for Conservation of Nature (IUCN) Red List and Green Status frameworks. Our framework defines a continuum of potential refugee status, which was demonstratable in continent-scale maps drawn from biogeographic regionalisation. Applying this framework to all native rodent species across the continent of Australia (a group that has suffered several extinctions and notable declines), we found that the risk of ecological misconceptions caused by shifted baselines (i.e. resulting from ‘shifting baseline syndrome') was prevalent. This suggests that in many cases, translocation opportunities that might be avoided because they are perceived as conservation introductions (as defined by the IUCN translocation guidelines), may in fact fall within the indigenous range, and should therefore be considered reasonable reintroductions. Ultimately, our potential refugee assessment framework will help to facilitate the undertaking of ambitious translocations that will build species' resilience to environmental change by resuming their adaptation to habitats across all formerly occupied bioregions.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 9","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141553394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}