Jacob Socolar, Batbayar Galtbalt, Alison Johnston, Frank A. La Sorte, Orin J. Robinson, Kenneth V. Rosenberg, Adriaan M. Dokter
{"title":"通过参与式科学揭示北美鸟类种群的季节性宏观分布情况","authors":"Jacob Socolar, Batbayar Galtbalt, Alison Johnston, Frank A. La Sorte, Orin J. Robinson, Kenneth V. Rosenberg, Adriaan M. Dokter","doi":"10.1111/ecog.07349","DOIUrl":null,"url":null,"abstract":"Avian population sizes fluctuate and change over vast spatial scales, but the mechanistic underpinnings remain poorly understood. A key question is whether spatial and annual variation in avian population dynamics is driven primarily by variation in breeding season recruitment or by variation in overwinter survival. We present a method using large-scale volunteer-collected data from project eBird to develop species-specific indices of net population change as proxies for survival and recruitment, based on twice-annual, rangewide snapshots of relative abundance in spring and fall. We demonstrate the use of these indices by examining spatially explicit annual variation in survival and recruitment in two well-surveyed nonmigratory North American species, Carolina wren <i>Thryothorus ludovicianus</i> and northern cardinal <i>Cardinalis cardinali</i>s. We show that, while interannual variation in both survival and recruitment is slight for northern cardinal, eBird abundance data reveal strong and geographically coherent signals of interannual variation in the overwinter survival of Carolina wren. As predicted, variation in wintertime survival dominates overall interannual population fluctuations of wrens and is correlated with winter temperature and snowfall in the northeastern United States, but not the southern United States. This study demonstrates the potential of participatory science (also known as citizen science) datasets like eBird for inferring variation in demographic rates and introduces a new complementary approach towards illuminating the macrodemography of North American birds at comprehensive continental extents.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"80 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal macro-demography of North American bird populations revealed through participatory science\",\"authors\":\"Jacob Socolar, Batbayar Galtbalt, Alison Johnston, Frank A. La Sorte, Orin J. Robinson, Kenneth V. Rosenberg, Adriaan M. Dokter\",\"doi\":\"10.1111/ecog.07349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Avian population sizes fluctuate and change over vast spatial scales, but the mechanistic underpinnings remain poorly understood. A key question is whether spatial and annual variation in avian population dynamics is driven primarily by variation in breeding season recruitment or by variation in overwinter survival. We present a method using large-scale volunteer-collected data from project eBird to develop species-specific indices of net population change as proxies for survival and recruitment, based on twice-annual, rangewide snapshots of relative abundance in spring and fall. We demonstrate the use of these indices by examining spatially explicit annual variation in survival and recruitment in two well-surveyed nonmigratory North American species, Carolina wren <i>Thryothorus ludovicianus</i> and northern cardinal <i>Cardinalis cardinali</i>s. We show that, while interannual variation in both survival and recruitment is slight for northern cardinal, eBird abundance data reveal strong and geographically coherent signals of interannual variation in the overwinter survival of Carolina wren. As predicted, variation in wintertime survival dominates overall interannual population fluctuations of wrens and is correlated with winter temperature and snowfall in the northeastern United States, but not the southern United States. This study demonstrates the potential of participatory science (also known as citizen science) datasets like eBird for inferring variation in demographic rates and introduces a new complementary approach towards illuminating the macrodemography of North American birds at comprehensive continental extents.\",\"PeriodicalId\":51026,\"journal\":{\"name\":\"Ecography\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/ecog.07349\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07349","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Seasonal macro-demography of North American bird populations revealed through participatory science
Avian population sizes fluctuate and change over vast spatial scales, but the mechanistic underpinnings remain poorly understood. A key question is whether spatial and annual variation in avian population dynamics is driven primarily by variation in breeding season recruitment or by variation in overwinter survival. We present a method using large-scale volunteer-collected data from project eBird to develop species-specific indices of net population change as proxies for survival and recruitment, based on twice-annual, rangewide snapshots of relative abundance in spring and fall. We demonstrate the use of these indices by examining spatially explicit annual variation in survival and recruitment in two well-surveyed nonmigratory North American species, Carolina wren Thryothorus ludovicianus and northern cardinal Cardinalis cardinalis. We show that, while interannual variation in both survival and recruitment is slight for northern cardinal, eBird abundance data reveal strong and geographically coherent signals of interannual variation in the overwinter survival of Carolina wren. As predicted, variation in wintertime survival dominates overall interannual population fluctuations of wrens and is correlated with winter temperature and snowfall in the northeastern United States, but not the southern United States. This study demonstrates the potential of participatory science (also known as citizen science) datasets like eBird for inferring variation in demographic rates and introduces a new complementary approach towards illuminating the macrodemography of North American birds at comprehensive continental extents.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.