InformationPub Date : 2024-07-18DOI: 10.3390/info15070415
Ailton Moreira, M. Santos
{"title":"An Open Data-Based Omnichannel Approach for Personalized Healthcare","authors":"Ailton Moreira, M. Santos","doi":"10.3390/info15070415","DOIUrl":"https://doi.org/10.3390/info15070415","url":null,"abstract":"Currently, telemedicine and telehealth have grown, prompting healthcare institutions to seek innovative ways to incorporate them into their services. Challenges such as resource allocation, system integration, and data compatibility persist in healthcare. Utilizing an open data approach in a versatile mobile platform holds great promise for addressing these challenges. This research focuses on adopting such an approach for a mobile platform catering to personalized care services. It aims to bridge identified gaps in healthcare, including fragmented communication channels and limited real-time data access, through an open data approach. This study builds upon previous research in omnichannel healthcare using prototyping to design a mobile companion for personalized care. By combining an omnichannel mobile companion with open data principles, this research successfully tackles key healthcare gaps, enhancing patient-centered care and improving data accessibility and integration. The strategy proves effective despite encountering challenges, although additional issues in personalized care services warrant further exploration and consideration.","PeriodicalId":510156,"journal":{"name":"Information","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141827294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NATCA YOLO-Based Small Object Detection for Aerial Images","authors":"Yicheng Zhu, Zhenhua Ai, Jinqiang Yan, Silong Li, Guowei Yang, Teng Yu","doi":"10.3390/info15070414","DOIUrl":"https://doi.org/10.3390/info15070414","url":null,"abstract":"The object detection model in UAV aerial image scenes faces challenges such as significant scale changes of certain objects and the presence of complex backgrounds. This paper aims to address the detection of small objects in aerial images using NATCA (neighborhood attention Transformer coordinate attention) YOLO. Specifically, the feature extraction network incorporates a neighborhood attention transformer (NAT) into the last layer to capture global context information and extract diverse features. Additionally, the feature fusion network (Neck) incorporates a coordinate attention (CA) module to capture channel information and longer-range positional information. Furthermore, the activation function in the original convolutional block is replaced with Meta-ACON. The NAT serves as the prediction layer in the new network, which is evaluated using the VisDrone2019-DET object detection dataset as a benchmark, and tested on the VisDrone2019-DET-test-dev dataset. To assess the performance of the NATCA YOLO model in detecting small objects in aerial images, other detection networks, such as Faster R-CNN, RetinaNet, and SSD, are employed for comparison on the test set. The results demonstrate that the NATCA YOLO detection achieves an average accuracy of 42%, which is a 2.9% improvement compared to the state-of-the-art detection network TPH-YOLOv5.","PeriodicalId":510156,"journal":{"name":"Information","volume":" 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141826124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InformationPub Date : 2024-07-18DOI: 10.3390/info15070416
Wajeeh M. Daher, Asma Hussein
{"title":"Higher Education Students’ Perceptions of GenAI Tools for Learning","authors":"Wajeeh M. Daher, Asma Hussein","doi":"10.3390/info15070416","DOIUrl":"https://doi.org/10.3390/info15070416","url":null,"abstract":"Students’ perceptions of tools with which they learn affect the outcomes of this learning. GenAI tools are new tools that have promise for students’ learning, especially higher education students. Examining students’ perceptions of GenAI tools as learning tools can help instructors better plan activities that utilize these tools in the higher education context. The present research considers four components of students’ perceptions of GenAI tools: efficiency, interaction, affect, and intention. To triangulate data, it combines the quantitative and the qualitative methodologies, by using a questionnaire and by conducting interviews. A total of 153 higher education students responded to the questionnaire, while 10 higher education students participated in the interview. The research results indicated that the means of affect, interaction, and efficiency were significantly medium, while the mean of intention was significantly high. The research findings showed that in efficiency, affect, and intention, male students had significantly higher perceptions of AI tools than female students, but in the interaction component, the two genders did not differ significantly. Moreover, the degree affected only the perception of interaction of higher education students, where the mean value of interaction was significantly different between B.A. and Ph.D. students in favor of Ph.D. students. Moreover, medium-technology-knowledge and high-technology-knowledge students differed significantly in their perceptions of working with AI tools in the interaction component only, where this difference was in favor of the high-technology-knowledge students. Furthermore, AI knowledge significantly affected efficiency, interaction, and affect of higher education students, where they were higher in favor of high-AI-knowledge students over low-AI-knowledge students, as well as in favor of medium-AI-knowledge students over low-AI-knowledge students.","PeriodicalId":510156,"journal":{"name":"Information","volume":" 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141826329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InformationPub Date : 2024-07-17DOI: 10.3390/info15070412
Sabila Nurwardani, Ailsa Zayyan, Endah Fuji Astuti, Panca O. Hadi Putra
{"title":"Exploring the Factors in the Discontinuation of a Talent Pool Information System: A Case Study of an EduTech Startup in Indonesia","authors":"Sabila Nurwardani, Ailsa Zayyan, Endah Fuji Astuti, Panca O. Hadi Putra","doi":"10.3390/info15070412","DOIUrl":"https://doi.org/10.3390/info15070412","url":null,"abstract":"This research was conducted to determine the reasons behind users’ discontinuation of talent pool information system use. A qualitative approach was chosen to explore these factors in depth. Respondents were selected using purposive sampling techniques, and the data collection process was carried out through semi-structured interviews. The thematic analysis method was then applied to the transcripts of the interviews with the users. Based on the qualitative methodology employed, we found seven factors behind users’ discontinuation of the use of the studied information system. The seven factors were grouped based on two dimensions, namely, experiential factors and external factors. Poor system quality, informational issues, interface issues, and unfamiliarity with the system influenced the experiential factors. On the other hand, the external factors were influenced by workforce needs, talent mismatches, and a lack of socialization. This research offers a novel, in-depth analysis of the factors that cause users to stop using information systems based on direct experience from users. In addition, the results of this study will be used as feedback companies can use to improve their systems.","PeriodicalId":510156,"journal":{"name":"Information","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141828067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InformationPub Date : 2024-07-16DOI: 10.3390/info15070411
Shubao Yao, Jianhui Lin, Hao Bai
{"title":"DPP: A Novel Disease Progression Prediction Method for Ginkgo Leaf Disease Based on Image Sequences","authors":"Shubao Yao, Jianhui Lin, Hao Bai","doi":"10.3390/info15070411","DOIUrl":"https://doi.org/10.3390/info15070411","url":null,"abstract":"Ginkgo leaf disease poses a grave threat to Ginkgo biloba. The current management of Ginkgo leaf disease lacks precision guidance and intelligent technologies. To provide precision guidance for disease management and to evaluate the effectiveness of the implemented measures, the present study proposes a novel disease progression prediction (DPP) method for Ginkgo leaf blight with a multi-level feature translation architecture and enhanced spatiotemporal attention module (eSTA). The proposed DPP method is capable of capturing key spatiotemporal dependencies of disease symptoms at various feature levels. Experiments demonstrated that the DPP method achieves state-of-the-art prediction performance in disease progression prediction. Compared to the top-performing spatiotemporal predictive learning method (SimVP + TAU), our method significantly reduced the mean absolute error (MAE) by 19.95% and the mean square error (MSE) by 25.35%. Moreover, it achieved a higher structure similarity index measure (SSIM) of 0.970 and superior peak signal-to-noise ratio (PSNR) of 37.746 dB. The proposed method can accurately forecast the progression of Ginkgo leaf blight to a large extent, which is expected to provide valuable insights for precision and intelligent disease management. Additionally, this study presents a novel perspective for the extensive research on plant disease prediction.","PeriodicalId":510156,"journal":{"name":"Information","volume":"5 39","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141642070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of Memristor Crossbar’s Mapping Using Lagrange Multiplier Method and Genetic Algorithm for Reducing Crossbar’s Area and Delay Time","authors":"Seungmyeong Cho, Rina Yoon, Ilpyeong Yoon, Jihwan Moon, Seokjin Oh, Kyeong-Sik Min","doi":"10.3390/info15070409","DOIUrl":"https://doi.org/10.3390/info15070409","url":null,"abstract":"Memristor crossbars offer promising low-power and parallel processing capabilities, making them efficient for implementing convolutional neural networks (CNNs) in terms of delay time, area, etc. However, mapping large CNN models like ResNet-18, ResNet-34, VGG-Net, etc., onto memristor crossbars is challenging due to the line resistance problem limiting crossbar size. This necessitates partitioning full-image convolution into sub-image convolution. To do so, an optimized mapping of memristor crossbars should be considered to divide full-image convolution into multiple crossbars. With limited crossbar resources, especially in edge devices, it is crucial to optimize the crossbar allocation per layer to minimize the hardware resource in term of crossbar area, delay time, and area–delay product. This paper explores three optimization scenarios: (1) optimizing total delay time under a crossbar’s area constraint, (2) optimizing total crossbar area with a crossbar’s delay time constraint, and (3) optimizing a crossbar’s area–delay-time product without constraints. The Lagrange multiplier method is employed for the constrained cases 1 and 2. For the unconstrained case 3, a genetic algorithm (GA) is used to optimize the area–delay-time product. Simulation results demonstrate that the optimization can have significant improvements over the unoptimized results. When VGG-Net is simulated, the optimization can show about 20% reduction in delay time for case 1 and 22% area reduction for case 2. Case 3 highlights the benefits of optimizing the crossbar utilization ratio for minimizing the area–delay-time product. The proposed optimization strategies can substantially enhance the neural network’s performance of memristor crossbar-based processing-in-memory architectures, especially for resource-constrained edge computing platforms.","PeriodicalId":510156,"journal":{"name":"Information","volume":"48 43","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141644771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InformationPub Date : 2024-07-15DOI: 10.3390/info15070410
V. Chatzea, Ilias Logothetis, Michail Kalogiannakis, Michael Rovithis, Nikolas Vidakis
{"title":"Digital Educational Tools for Undergraduate Nursing Education: A Review of Serious Games, Gamified Applications and Non-Gamified Virtual Reality Simulations/Tools for Nursing Students","authors":"V. Chatzea, Ilias Logothetis, Michail Kalogiannakis, Michael Rovithis, Nikolas Vidakis","doi":"10.3390/info15070410","DOIUrl":"https://doi.org/10.3390/info15070410","url":null,"abstract":"Educational technology has advanced tremendously in recent years, with several major developments becoming available in healthcare professionals’ education, including nursing. Furthermore, the COVID-19 pandemic resulted in obligatory physical distancing, which forced an accelerated digital transformation of teaching tools. This review aimed to summarize all the available digital tools for nursing undergraduate education developed from 2019 to 2023. A robust search algorithm was implemented in the Scopus database, resulting in 1592 publications. Overall, 266 relevant studies were identified enrolling more than 22,500 undergraduate nursing students. Upon excluding multiple publications on the same digital tool, studies were categorized into three broad groups: serious games (28.0%), gamified applications (34.5%), and VR simulations and other non-gamified digital interventions (37.5%). Digital tools’ learning activity type (categories = 8), geographical distribution (countries = 34), educational subjects (themes = 12), and inclusion within a curriculum course (n = 108), were also explored. Findings indicate that digital educational tools are an emerging field identified as a potential pedagogical strategy aiming to transform nursing education. This review highlights the latest advances in the field, providing useful insights that could inspire countries and universities which have not yet incorporated digital educational tools in their nursing curriculum, to invest in their implementation.","PeriodicalId":510156,"journal":{"name":"Information","volume":"34 47","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141645269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InformationPub Date : 2024-07-14DOI: 10.3390/info15070407
Zhenyu Zhang, Lin Shi, Yang Yuan, Huanyue Zhou, Shoukun Xu
{"title":"Multi-Level Attention with 2D Table-Filling for Joint Entity-Relation Extraction","authors":"Zhenyu Zhang, Lin Shi, Yang Yuan, Huanyue Zhou, Shoukun Xu","doi":"10.3390/info15070407","DOIUrl":"https://doi.org/10.3390/info15070407","url":null,"abstract":"Joint entity-relation extraction is a fundamental task in the construction of large-scale knowledge graphs. This task relies not only on the semantics of the text span but also on its intricate connections, including classification and structural details that most previous models overlook. In this paper, we propose the incorporation of this information into the learning process. Specifically, we design a novel two-dimensional word-pair tagging method to define the task of entity and relation extraction. This allows type markers to focus on text tokens, gathering information for their corresponding spans. Additionally, we introduce a multi-level attention neural network to enhance its capacity to perceive structure-aware features. Our experiments show that our approach can overcome the limitations of earlier tagging methods and yield more accurate results. We evaluate our model using three different datasets: SciERC, ADE, and CoNLL04. Our model demonstrates competitive performance compared to the state-of-the-art, surpassing other approaches across the majority of evaluated metrics.","PeriodicalId":510156,"journal":{"name":"Information","volume":"50 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141650248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InformationPub Date : 2024-07-14DOI: 10.3390/info15070408
Weiq Li, Yifan Wang, Yue Yu, Jie Liu
{"title":"Application of Attention-Enhanced 1D-CNN Algorithm in Hyperspectral Image and Spectral Fusion Detection of Moisture Content in Orah Mandarin (Citrus reticulata Blanco)","authors":"Weiq Li, Yifan Wang, Yue Yu, Jie Liu","doi":"10.3390/info15070408","DOIUrl":"https://doi.org/10.3390/info15070408","url":null,"abstract":"A method fusing spectral and image information with a one-dimensional convolutional neural network(1D-CNN) for the detection of moisture content in Orah mandarin (Citrus reticulata Blanco) was proposed. The 1D-CNN model integrated with three different attention modules (SEAM, ECAM, CBAM) and machine learning models were applied to individual spectrum and fused information by passing the traditional feature extraction stage. Additionally, the dimensionality reduction of hyperspectral images and extraction of one-dimensional color and textural features from the reduced images were performed, thus avoiding the large parameter volumes and efficiency decline inherent in the direct modeling of two-dimensional images. The results indicated that the 1D-CNN model with integrated attention modules exhibited clear advantages over machine learning models in handling multi-source information. The optimal machine learning model was determined to be the random forest (RF) model under the fusion information, with a correlation coefficient (R) of 0.8770 and a root mean square error (RMSE) of 0.0188 on the prediction set. The CBAM-1D-CNN model under the fusion information exhibited the best performance, with an R of 0.9172 and an RMSE of 0.0149 on the prediction set. The 1D-CNN models utilizing fusion information exhibited superior performance compared to single spectrum, and 1D-CNN with the fused information based on SEAM, ECAM, and CBAM respectively improved Rp by 4.54%, 0.18%, and 10.19% compared to the spectrum, with the RMSEP decreased by 11.70%, 14.06%, and 31.02%, respectively. The proposed approach of 1D-CNN integrated attention can obtain excellent regression results by only using one-dimensional data and without feature pre-extracting, reducing the complexity of the models, simplifying the calculation process, and rendering it a promising practical application.","PeriodicalId":510156,"journal":{"name":"Information","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141650370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InformationPub Date : 2024-07-13DOI: 10.3390/info15070406
Bernal Picado Argüello, V. González-Prida
{"title":"Integrating Change Management with a Knowledge Management Framework: A Methodological Proposal","authors":"Bernal Picado Argüello, V. González-Prida","doi":"10.3390/info15070406","DOIUrl":"https://doi.org/10.3390/info15070406","url":null,"abstract":"This study proposes the integration of change management with a knowledge management framework to address knowledge retention and successful change management in the context of Industry 5.0. Using the ADKAR model, it is suggested to implement strategies for training and user acceptance testing. The research highlights the importance of applying the human capital life cycle in knowledge and change management, demonstrating the effectiveness of this approach in adapting to Industry 5.0. The methodology includes a review of the state of the art in intangible asset management, change management models, and the integration of change and knowledge management. In addition, a case study is presented in a food production company that validates the effectiveness of the ADKAR model in implementing digital technologies, improving process efficiency and increasing employee acceptance of new technologies. The results show a significant improvement in process efficiency and a reduction in resistance to change. The originality of the study lies in the combination of the ADKAR model with intangible asset and knowledge management, providing a holistic solution for change management in the Industry 5.0 era. Future implications suggest the need to explore the applicability of the ADKAR model in different industries and cultures, as well as its long-term effects on organisational sustainability and innovation. This comprehensive approach can serve as a guide for other organisations seeking to implement successful digital transformations.","PeriodicalId":510156,"journal":{"name":"Information","volume":"60 39","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141651682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}