NATCA YOLO-Based Small Object Detection for Aerial Images

Information Pub Date : 2024-07-18 DOI:10.3390/info15070414
Yicheng Zhu, Zhenhua Ai, Jinqiang Yan, Silong Li, Guowei Yang, Teng Yu
{"title":"NATCA YOLO-Based Small Object Detection for Aerial Images","authors":"Yicheng Zhu, Zhenhua Ai, Jinqiang Yan, Silong Li, Guowei Yang, Teng Yu","doi":"10.3390/info15070414","DOIUrl":null,"url":null,"abstract":"The object detection model in UAV aerial image scenes faces challenges such as significant scale changes of certain objects and the presence of complex backgrounds. This paper aims to address the detection of small objects in aerial images using NATCA (neighborhood attention Transformer coordinate attention) YOLO. Specifically, the feature extraction network incorporates a neighborhood attention transformer (NAT) into the last layer to capture global context information and extract diverse features. Additionally, the feature fusion network (Neck) incorporates a coordinate attention (CA) module to capture channel information and longer-range positional information. Furthermore, the activation function in the original convolutional block is replaced with Meta-ACON. The NAT serves as the prediction layer in the new network, which is evaluated using the VisDrone2019-DET object detection dataset as a benchmark, and tested on the VisDrone2019-DET-test-dev dataset. To assess the performance of the NATCA YOLO model in detecting small objects in aerial images, other detection networks, such as Faster R-CNN, RetinaNet, and SSD, are employed for comparison on the test set. The results demonstrate that the NATCA YOLO detection achieves an average accuracy of 42%, which is a 2.9% improvement compared to the state-of-the-art detection network TPH-YOLOv5.","PeriodicalId":510156,"journal":{"name":"Information","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info15070414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The object detection model in UAV aerial image scenes faces challenges such as significant scale changes of certain objects and the presence of complex backgrounds. This paper aims to address the detection of small objects in aerial images using NATCA (neighborhood attention Transformer coordinate attention) YOLO. Specifically, the feature extraction network incorporates a neighborhood attention transformer (NAT) into the last layer to capture global context information and extract diverse features. Additionally, the feature fusion network (Neck) incorporates a coordinate attention (CA) module to capture channel information and longer-range positional information. Furthermore, the activation function in the original convolutional block is replaced with Meta-ACON. The NAT serves as the prediction layer in the new network, which is evaluated using the VisDrone2019-DET object detection dataset as a benchmark, and tested on the VisDrone2019-DET-test-dev dataset. To assess the performance of the NATCA YOLO model in detecting small objects in aerial images, other detection networks, such as Faster R-CNN, RetinaNet, and SSD, are employed for comparison on the test set. The results demonstrate that the NATCA YOLO detection achieves an average accuracy of 42%, which is a 2.9% improvement compared to the state-of-the-art detection network TPH-YOLOv5.
基于 NATCA YOLO 的航空图像小目标检测
无人机航拍图像场景中的物体检测模型面临着一些挑战,例如某些物体的比例变化很大以及存在复杂的背景。本文旨在利用 NATCA(邻域注意变换器协调注意)YOLO 解决航空图像中的小物体检测问题。具体来说,特征提取网络在最后一层加入了邻域注意力变换器(NAT),以捕捉全局背景信息并提取不同的特征。此外,特征融合网络(Neck)还加入了坐标注意(CA)模块,以捕捉信道信息和更远距离的位置信息。此外,原始卷积块中的激活函数被 Meta-ACON 所取代。NAT 作为新网络的预测层,以 VisDrone2019-DET 目标检测数据集为基准进行评估,并在 VisDrone2019-DET-test-dev 数据集上进行测试。为了评估 NATCA YOLO 模型在检测航空图像中的小物体方面的性能,在测试集上采用了其他检测网络(如 Faster R-CNN、RetinaNet 和 SSD)进行比较。结果表明,NATCA YOLO 检测的平均准确率为 42%,与最先进的检测网络 TPH-YOLOv5 相比提高了 2.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信