Multi-Level Attention with 2D Table-Filling for Joint Entity-Relation Extraction

Information Pub Date : 2024-07-14 DOI:10.3390/info15070407
Zhenyu Zhang, Lin Shi, Yang Yuan, Huanyue Zhou, Shoukun Xu
{"title":"Multi-Level Attention with 2D Table-Filling for Joint Entity-Relation Extraction","authors":"Zhenyu Zhang, Lin Shi, Yang Yuan, Huanyue Zhou, Shoukun Xu","doi":"10.3390/info15070407","DOIUrl":null,"url":null,"abstract":"Joint entity-relation extraction is a fundamental task in the construction of large-scale knowledge graphs. This task relies not only on the semantics of the text span but also on its intricate connections, including classification and structural details that most previous models overlook. In this paper, we propose the incorporation of this information into the learning process. Specifically, we design a novel two-dimensional word-pair tagging method to define the task of entity and relation extraction. This allows type markers to focus on text tokens, gathering information for their corresponding spans. Additionally, we introduce a multi-level attention neural network to enhance its capacity to perceive structure-aware features. Our experiments show that our approach can overcome the limitations of earlier tagging methods and yield more accurate results. We evaluate our model using three different datasets: SciERC, ADE, and CoNLL04. Our model demonstrates competitive performance compared to the state-of-the-art, surpassing other approaches across the majority of evaluated metrics.","PeriodicalId":510156,"journal":{"name":"Information","volume":"50 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info15070407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Joint entity-relation extraction is a fundamental task in the construction of large-scale knowledge graphs. This task relies not only on the semantics of the text span but also on its intricate connections, including classification and structural details that most previous models overlook. In this paper, we propose the incorporation of this information into the learning process. Specifically, we design a novel two-dimensional word-pair tagging method to define the task of entity and relation extraction. This allows type markers to focus on text tokens, gathering information for their corresponding spans. Additionally, we introduce a multi-level attention neural network to enhance its capacity to perceive structure-aware features. Our experiments show that our approach can overcome the limitations of earlier tagging methods and yield more accurate results. We evaluate our model using three different datasets: SciERC, ADE, and CoNLL04. Our model demonstrates competitive performance compared to the state-of-the-art, surpassing other approaches across the majority of evaluated metrics.
利用二维填表的多层次注意力进行联合实体关系提取
联合实体关系提取是构建大规模知识图谱的一项基本任务。这项任务不仅依赖于文本跨度的语义,还依赖于文本之间错综复杂的联系,包括分类和结构细节,而这些正是以往大多数模型所忽视的。在本文中,我们提出将这些信息纳入学习过程。具体来说,我们设计了一种新颖的二维词对标记法来定义实体和关系提取任务。这样,类型标记器就能专注于文本标记,收集相应跨度的信息。此外,我们还引入了多级注意力神经网络,以增强其感知结构感知特征的能力。我们的实验表明,我们的方法可以克服早期标记方法的局限性,并产生更准确的结果。我们使用三个不同的数据集对我们的模型进行了评估:SciERC、ADE 和 CoNLL04。与最先进的方法相比,我们的模型表现出极具竞争力的性能,在大多数评估指标上都超过了其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信