{"title":"Jute–Copper Nanocomposite Embedded PSf Membrane for Sustainable and Efficient Heavy Metal Removal from Water Sources","authors":"Harsh Prajapati, Jeny Gosai, Nitin Chaudhari, Balanagulu Busupalli","doi":"10.1021/acs.langmuir.4c03847","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03847","url":null,"abstract":"Numerous corporations have overlooked environmental regulations concerning wastewater treatment, leading to a worldwide issue regarding hazardous pollutant discharge, particularly dyes and heavy metal ions, into river sources. Various industries, with water, energy, and biological sectors, actively employ membranes. Membranes capable of showing flux, metal and dye sorption, and catalysis have been developed and are extensively used by functionalizing the pores of ultrafiltration, microfiltration, and nanofiltration membranes with responsive properties. The enhancement of synthetic membrane performance can be achieved by developing new polymers or modifying the surface of existing polymers. In this study, high porosity and large internal pore volume polysulfone (PSf) membrane composites were produced on a laboratory scale by adjusting the polymer coagulation conditions during the phase inversion process, incorporating copper nanoparticles for antifouling properties, and utilizing pretreated natural jute fibers. A comprehensive characterization of the composites was conducted by using FTIR, XRD, XPS, ICP-MS, and SEM techniques. To calculate their possible uses in separation and purification methods, the performance of PSf-based membrane composites was evaluated in terms of heavy metal rejection rates (%) in water.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"11 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced Liquid-Entrapped Nanosurfaces for Optimized Atmospheric Water Harvesting","authors":"Ghulam Mohd, Saswati Priyadarshini, Abhigith Nair, Versha Chauhan, Irfan Majeed Bhat, Ahmad Illahie Tantry, Shafeer Kalathil, Kowsar Majid, Saifullah Lone","doi":"10.1021/acs.langmuir.4c03851","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03851","url":null,"abstract":"Our study addresses the pressing global freshwater scarcity crisis by engineering advanced liquid-entrapped nanosurfaces optimized for highly efficient atmospheric water harvesting (AWH). Through a synergistic approach integrating carbon fiber paper (CFP), hydrothermally synthesized nanoneedles (NNs), and silicone oil liquid entrapment (LE) within NNs, we achieved remarkable improvements in water collection efficiency. While CFP captures fog effectively during AWH, it faces challenges with water-pinning effects, mitigated by NNs’ improved droplet-spreading properties, leading to a notable 50% increase in harvesting efficiency. Further enhancements are observed upon silicone oil entrapment within CFP-bearing NNs, resulting in exceptional performance compared to noninfused surfaces. The resultant liquid entrapped nanoneedles (LE-NNs) and liquid entrapped oxidized (LE-ONNs) surfaces exhibit significant fog harvesting capability, achieving an impressive water collection rate of 21.643 ± 0.538 L/m<sup>2</sup>/h, which represents a 4-fold increase compared to CFP alone. This experiment was conducted with a sample area of 0.5 cm<sup>2</sup>. The samples were tilted at different angles to optimize mist contact with the surface, and the humidifier nozzle was positioned approximately 5 cm from the test surface to ensure a minimal fog velocity. Comprehensive analysis of morphological and compositional attributes is conducted by using techniques such as field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. Leveraging CFP, NNs, or ONNs with LE presents a straightforward and highly effective surface engineering method. This approach holds promise for advancing water collection technologies and addressing global water crises sustainably.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"84 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LangmuirPub Date : 2024-12-20DOI: 10.1021/acs.langmuir.4c03855
Binghe Yang, Lige Gong, Hongtao Cui, Jihua Wang, Limin Dong, Yunhao Gu, Hui Li, Meijia Wang
{"title":"Host–Guest Structure Enabling Electrocatalytic Hydrogen Evolution Performance by POM@TM-BDC Composites","authors":"Binghe Yang, Lige Gong, Hongtao Cui, Jihua Wang, Limin Dong, Yunhao Gu, Hui Li, Meijia Wang","doi":"10.1021/acs.langmuir.4c03855","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03855","url":null,"abstract":"Developing economical, efficient, and earth-rich electrocatalysts for hydrogen evolution reaction (HER) is quite challenging and ideal. We propose that [P<sub>2</sub>W<sub>18</sub>O<sub>62</sub>]<sup>6–</sup> as the guest, due to its excellent reversible 18 electron-transfer capacity and redox properties, and then TM-BDC (TM = Ni, Co, Fe, BDC = 1,4-benzene-dicarboxylate) as the host make [P<sub>2</sub>W<sub>18</sub>O<sub>62</sub>]<sup>6–</sup> packaged and not escape due to its porous structure. Benefiting from strong redox-competent interactions between [P<sub>2</sub>W<sub>18</sub>O<sub>62</sub>]<sup>6–</sup> and porous structures of TM-BDC and full exposure of abundant active sites, three {P<sub>2</sub>W<sub>18</sub>}@TM-BDC composites exhibited excellent HER activity, with {P<sub>2</sub>W<sub>18</sub>}@Ni-BDC requiring 198 mV (overpotentials) and 104 mV/dec (Tafel slope) for HER. More importantly, three {P<sub>2</sub>W<sub>18</sub>}@TM-BDC composites show excellent stability, with the voltage remaining nearly constant for 24 h. Meanwhile, the linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) curves of three {P<sub>2</sub>W<sub>18</sub>}@TM-BDC overlap well with the initial curve after the stability test. Our work offers a promising strategy for synthesizing high-performance electrocatalysts and broadens the scope of nonprecious metal composite material preparation.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"71 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of the Zinc Deposition Interface by Sn Nanoparticles for Fast-Charging Zinc Metal Anodes","authors":"Xiaoke Zhi, Xia Wang, Li Wang, Guangchuan Liang, Yaping Wang, Yifang Zhang","doi":"10.1021/acs.langmuir.4c03789","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03789","url":null,"abstract":"The electrodeposition behavior of zinc metal anodes critically correlates with the electrode surface properties. The tendency for inhomogeneous deposition of zinc is more severe, especially under high current density. Herein, the surface structure of zinc and zinc deposition substrates is reconstructed with a uniform metal tin (Sn) coating via a simple evaporation method. Sn nanoparticles can serve on metal nuclei to reduce the Zn nucleation barrier and enable more nucleation sites for even deposition. Moreover, the mechanical stability of the electrode surface is improved via Zn–Sn alloying. Consequently, the uniform Zn deposition/dissolution behavior on Sn-modified two- and three-dimensional copper substrates is reflected in the stable Coulombic efficiency and reduced polarization. The Sn@Zn electrode is endowed with superior stability at a high current density (800 h at 20 mA cm<sup>–2</sup>). More encouragingly, the full cell installed with a carbon nanotube/MnO<sub>2</sub> cathode maintains enduring stability (700 cycles) at 1 A g<sup>–1</sup>. This work enlightens metal alloy as an effective and instructive modification strategy toward stabilized zinc anodes.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"40 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolution of Gas Desorption Hysteresis in Coal under Negative-Pressure Condition: Attenuation Mechanism and an Intuitive Index","authors":"Yushan Wei, Qingquan Liu, Wenyi Huang, Biao Lv, Xingyi Nie, Chenghao Liu, Liang Wang, Yuanping Cheng","doi":"10.1021/acs.langmuir.4c03018","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03018","url":null,"abstract":"Quantifying the extent of desorption hysteresis is essential for establishing gas flow models. However, existing indices fail to adequately represent the changes in the actively mobile gas volume involved in transport, and experiments on the degree of hysteresis in negative-pressure environments are scarce. Therefore, this study conducted isothermal adsorption and desorption tests under both atmospheric- and negative-pressure conditions. Based on the results, a segmented gas desorption model was developed, introducing a new hysteresis index. The study examined gas desorption characteristics under negative pressure in coal and its effect on the maximum gas flow volume. The key conclusions are as follows: The study employed various pore testing methods, revealing well-developed micropores in the Shunhe coal sample and the existence of a certain amount of ink-bottle-shaped pores. Isothermal adsorption–desorption experimental results indicated significant desorption hysteresis effects in both the particle and column samples. The study defined a new index termed the active gas index (AGI) to characterize the actively mobile gas volume participating in desorption, which is the ratio between the active gas quantity participating in desorption and the theoretical value of gas migration capable of participating in flow. The AGI values increase with the increase of pressure drop under both atmospheric- and negative-pressure conditions. The rate of change of AGI in the atmospheric section is relatively flat but increases rapidly upon entering the negative-pressure environment. The evolutionary trend of the AGI can better reflect the characteristics of the change in the active gas volume during negative-pressure desorption. This research provides a new perspective, holding significant theoretical value for shale gas and coalbed methane development.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"23 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LangmuirPub Date : 2024-12-20DOI: 10.1021/acs.langmuir.4c04749
Xiaoyan Liu, Min Lu, Caihua Wang, Guoqiang Xiao, Bao Wang, Lei Chen
{"title":"Research into the Influence of Filtration Media Microstructure on Oil–Water Separation Performance","authors":"Xiaoyan Liu, Min Lu, Caihua Wang, Guoqiang Xiao, Bao Wang, Lei Chen","doi":"10.1021/acs.langmuir.4c04749","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04749","url":null,"abstract":"Oil–water separation materials with specialized wettability have garnered significant attention in the field of oil–water separation due to the advantages of simple use and no secondary pollution. However, the adsorptive contamination of the filter surface by impurity phases and surfactants can cause a shift in the wettability of the filter surface. For efficient oil–water separation and improved resistance to adherent contamination on the oil–water separation membrane surface, herein, superwetted Cu nanofilms and smooth hydrophobic surfaces were prepared on SSM substrates by one-step electrodeposition and immersion methods, respectively. For water-in-oil/oil-in-water emulsions, nano-Cu has high separation efficiency. Experimentally, it was analyzed that the smaller spacing between the pores of the mesh membrane and the micro-nanostructures makes the separation effect better, but the flux will be reduced accordingly. By studying the separation images during the actual separation process through optical microscopy, it was found that the increase in the efficiency of the mesh membrane during the oil–water separation process and the decrease in the flux were due to the impurity phases aggregating and clogging the pores during the separation process to achieve a reduction in the pore size and the spacing of the micro-nanostructures. And further verification of the stability and mechanism correctness of the nano-Cu mesh film was conducted using cyclic experiments. The surface adhesion mechanism of filtration materials was analyzed by studying the phenomenon of water droplet adhesion on different mesh membranes and the ratio of adhesion. The research findings provide a comprehensive analysis of oil–water separation materials, focusing on both separation effectiveness and antiadhesion properties. This study offers new insights into the design of efficient oil–water separation materials and holds significant implications for advancing the practical application of oil–water separation membranes.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"79 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LangmuirPub Date : 2024-12-20DOI: 10.1021/acs.langmuir.4c03369
Muhammad Hikam, Putri P. P. Asri, Faiq H. Hamid, Ahmad Miftahul Anwar, Muhamad Nasir, Afriyanti Sumboja, Lia Amelia Tresna Wulan Asri
{"title":"Electrospun Poly(vinyl Alcohol)/Chitin Nanofiber Membrane as a Sustainable Lithium-Ion Battery Separator","authors":"Muhammad Hikam, Putri P. P. Asri, Faiq H. Hamid, Ahmad Miftahul Anwar, Muhamad Nasir, Afriyanti Sumboja, Lia Amelia Tresna Wulan Asri","doi":"10.1021/acs.langmuir.4c03369","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03369","url":null,"abstract":"Commercial battery separators are made of polyolefin polymers due to their desired mechanical strength and chemical stability. However, these materials are not biodegradable and are challenging to recycle. Considering the environmental issues from polyolefins, biodegradable polymers can be developed as separators to reduce the potential waste from polyolefin separators. In this work, we investigated the potential of poly(vinyl alcohol)/chitin nanofiber (PVA/CHNF) nanofiber as a sustainable lithium-ion battery separator, which was successfully fabricated via the electrospinning and cross-linking method. The PVA/CHNF separator is biodegradable and has an ionic conductivity (1.41 mS cm<sup>–1</sup>), desirable porosity (86%), good thermal stability (1.4% shrinkage upon heating at 90 °C for 1 h), as well as high electrolyte uptake (388%). The PVA/CHNF separator is also evaluated in the assembled Li//LiFePO<sub>4</sub> cells, showing an improved performance compared to the cell with the commercial separator. It shows a discharge capacity of 142 mAh g<sup>–1</sup>, which is stable throughout 120 charge–discharge cycles. Hence, according to these resulting properties, the PVA/CHNF separator shows promise as a sustainable and environmentally friendly lithium-ion battery separator, offering a high-value use of waste chitin materials.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"97 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient Removal of Pharmaceutical Contaminants from Aqueous Solution Using Plant-Derived Biosurfactant-Assisted Dissolved Air Flotation Process","authors":"Gowri Pooja, Ponnusamy Senthil Kumar, Chitra Boobalan, Gayathri Rangasamy","doi":"10.1021/acs.langmuir.4c04520","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04520","url":null,"abstract":"This study investigates the removal of ibuprofen and diclofenac from aqueous media via a fully pressurized dissolved air flotation system, enhanced by fenugreek-derived saponin, a plant-based biosurfactant. The use of fenugreek saponin in flotation processes distinguishes this work from previous studies as it offers an ecofriendly and efficient alternative to chemical surfactants. The biosurfactant’s surface-active properties were confirmed through FT-IR, UV–vis spectroscopy identified key functional groups and structural characteristics of the saponin, NMR provided molecular insights into its bioactive components, and surface tension analyses demonstrated its ability to reduce interfacial tension, indicating effective surfactant behavior. To optimize the saponin extraction, the ultrasound-assisted extraction (UAE) method was employed using a 70% ethanolic solution for 50 min, significantly improving the flotation efficiency. Experimental conditions were carefully optimized to maximize the removal efficiency of both contaminants. For ibuprofen, the optimal pH was 5 with a retention time of 10 min, while for diclofenac, the optimal pH was 4 with a contact time of 15 min. A saponin dosage of 0.4 wt % was used in both cases, with the flotation process operating under a pressure of 15 psig and a flow rate of 0.5 L/min. Under these conditions, the process attained a maximum removal efficiency of 98.59% for ibuprofen and 95.32% for diclofenac. GC-MS results further validated the presence of bioactive components in fenugreek saponin that are responsible for its high contaminant removal capacity. Despite the challenge of scum removal during the flotation process, this study demonstrates the high efficiency of this process in treating low-concentration pollutants. The process is not only rapid but also allows for selective pollutant removal while minimizing the use of harmful chemicals, offering a more sustainable and ecofriendly solution for wastewater treatment.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"14 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancement of Methylene Blue Adsorption by Acid–Base Neutralization-Induced Bulging MXene/RGO Composite Foams","authors":"Wenshuai Jiang, Yaning Wang, Yuxi Wang, Wen Zhou, Jiefen Shen, Qingjun Liu","doi":"10.1021/acs.langmuir.4c04010","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c04010","url":null,"abstract":"Nanocomposite films made from graphene oxide (GO) and MXene have a dense layered structure due to nanosheet self-stacking, limiting their dye adsorption performance. In this study, acid–base neutralization reactions are used to induce MXene/reduced graphene oxide (RGO) films bulging, which opens the stacked layer structure within the membrane and enhances MB adsorption performance. The effects of the pH, temperature, contact time, and initial concentration of MB on the adsorption performance are further investigated. The results indicate that the adsorption process conforms to the pseudo-second-order kinetic and Freundlich isotherm models and is heat-absorbing and spontaneous, and the MXene/RGO foams have an adsorption capacity of up to 1099.5 mg g<sup>–1</sup> for MB. In addition, our study show that the MXene/RGO foams not only have better reusability, but also exhibit better adsorption for other dyes. The efficient MB removal is attributed to the increased specific surface area of the composite foams, increased active sites, strong electrostatic interactions between MB and the composite foams, as well as intercalation adsorption. These findings offer new options for solving dye effluent problems.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"19 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LangmuirPub Date : 2024-12-19DOI: 10.1021/acs.langmuir.4c03592
Xiaolong Liu, Zhiwen Zheng, Juhua Xiang, Hanwei Wang, Haizhong Wang, Dapeng Feng, Dan Qiao, Hansheng Li
{"title":"Perspective of Tribological Mechanisms for α-Alkene Molecules with Different Chain Lengths from Interface Behavior","authors":"Xiaolong Liu, Zhiwen Zheng, Juhua Xiang, Hanwei Wang, Haizhong Wang, Dapeng Feng, Dan Qiao, Hansheng Li","doi":"10.1021/acs.langmuir.4c03592","DOIUrl":"https://doi.org/10.1021/acs.langmuir.4c03592","url":null,"abstract":"Three α-alkene lubricants, differentiated by chain length, were selected as model compounds to investigate the influence of chain length on tribological properties. The novelty of this study lies in setting chain length as the sole variable to explore its impact on surface and adsorption energy. Based on the above findings, the study provides a unique explanation of the intrinsic relationship between chain length and tribological performance. The tribological properties of the three α-alkenes were compared, and subsequent characterization methods elucidated the wear mechanisms and explored tribochemical reactions. The study employed the Owens–Wendt–Rabel–Kaelble (OWRK) method and density functional theory (DFT) to investigate each compound’s surface energy and adsorption energy. Experimental results revealed that the average friction coefficients (abridged as COF) for 1-decene, 1-tetradecene, and 1-octadecene decreased sequentially to 0.125, 0.099, and 0.075, respectively. The wear volume of 1-tetradecene decreased by 53.2% and that of 1-octadecene decreased by 64.0% compared to 1-decene. This can be attributed to the simultaneous enhancement of the surface energy and adsorption energy with increasing chain length. On the one hand, the increase in surface energy facilitates tribochemical reactions positively influencing the formation of tribofilms. On the other hand, the increase in adsorption energy enhances the adsorption of lubricants on the substrate surface. The synergy of these two effects allows 1-octadecene and 1-tetradecene (long-chain α-alkenes) to exhibit superior tribological performance compared to that of 1-decene (short-chain α-alkenes). Ultimately, this study offers unique insights into understanding lubrication mechanisms.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"1 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142849801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}