{"title":"Single-Cell Mapping of Colloidal Phase Transitions via Dielectrophoretic Control of Particle Concentration.","authors":"Namhee Kang, Yeonseo Joo, Hyerim Hwang","doi":"10.1021/acs.langmuir.5c03803","DOIUrl":null,"url":null,"abstract":"<p><p>Colloidal systems offer a versatile platform for probing condensed matter behavior through tunable interactions and direct imaging. While dielectrophoresis (DEP) has previously been used to crystallize colloids, its broader potential for systematically resolving multiple phase transitions within a single system remains underexplored. Here, we build on prior DEP-based approaches by demonstrating a unified single-sample platform that enables continuous, reversible modulation of local volume fraction and interparticle potential via electric field gradients and surfactant-controlled ionic strength. This platform accesses a range of phase states including liquid-BCC, BCC-FCC, and melting, within a sealed sample. Using real-time confocal microscopy and quantitative structural analysis, we track the evolution of order and capture reversible transitions. Our results highlight the ability to controllably switch between distinct crystal symmetries and phase boundaries in situ, offering a powerful tool for studying nonequilibrium transitions and interface dynamics.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c03803","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Colloidal systems offer a versatile platform for probing condensed matter behavior through tunable interactions and direct imaging. While dielectrophoresis (DEP) has previously been used to crystallize colloids, its broader potential for systematically resolving multiple phase transitions within a single system remains underexplored. Here, we build on prior DEP-based approaches by demonstrating a unified single-sample platform that enables continuous, reversible modulation of local volume fraction and interparticle potential via electric field gradients and surfactant-controlled ionic strength. This platform accesses a range of phase states including liquid-BCC, BCC-FCC, and melting, within a sealed sample. Using real-time confocal microscopy and quantitative structural analysis, we track the evolution of order and capture reversible transitions. Our results highlight the ability to controllably switch between distinct crystal symmetries and phase boundaries in situ, offering a powerful tool for studying nonequilibrium transitions and interface dynamics.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).