{"title":"On relaxed inertial projection and contraction algorithms for solving monotone inclusion problems","authors":"Bing Tan, Xiaolong Qin","doi":"10.1007/s10444-024-10156-1","DOIUrl":"10.1007/s10444-024-10156-1","url":null,"abstract":"<div><p>We present three novel algorithms based on the forward-backward splitting technique for the solution of monotone inclusion problems in real Hilbert spaces. The proposed algorithms work adaptively in the absence of the Lipschitz constant of the single-valued operator involved thanks to the fact that there is a non-monotonic step size criterion used. The weak and strong convergence and the <i>R</i>-linear convergence of the developed algorithms are investigated under some appropriate assumptions. Finally, our algorithms are put into practice to address the restoration problem in the signal and image fields, and they are compared to some pertinent algorithms in the literature.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical methods for forward fractional Feynman–Kac equation","authors":"Daxin Nie, Jing Sun, Weihua Deng","doi":"10.1007/s10444-024-10152-5","DOIUrl":"10.1007/s10444-024-10152-5","url":null,"abstract":"<div><p>Fractional Feynman–Kac equation governs the functional distribution of the trajectories of anomalous diffusion. The non-commutativity of the integral fractional Laplacian and time-space coupled fractional substantial derivative, i.e., <span>(mathcal {A}^{s}{}_{0}partial _{t}^{1-alpha ,x}ne {}_{0}partial _{t}^{1-alpha ,x}mathcal {A}^{s})</span>, brings about huge challenges on the regularity and spatial error estimates for the forward fractional Feynman–Kac equation. In this paper, we first use the corresponding resolvent estimate obtained by the bootstrapping arguments and the generalized Hölder-type inequalities in Sobolev space to build the regularity of the solution, and then the fully discrete scheme constructed by convolution quadrature and finite element methods is developed. Also, the complete error analyses in time and space directions are respectively presented, which are consistent with the provided numerical experiments.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An efficient rotational pressure-correction schemes for 2D/3D closed-loop geothermal system","authors":"Jian Li, Jiawei Gao, Yi Qin","doi":"10.1007/s10444-024-10154-3","DOIUrl":"10.1007/s10444-024-10154-3","url":null,"abstract":"<div><p>In this paper, the rotational pressure-correction schemes for the closed-loop geothermal system are developed and analyzed. The primary benefit of this projection method is to replace the incompressible condition. The system is considered consisting of two distinct regions, with the free flow region governed by the Navier–Stokes equations and the porous media region governed by Darcy’s law. At the same time, the heat equations are coupled with the flow equations to describe the heat transfer in both regions. In the closed-loop geothermal system, the rotational pressure-correction schemes are used for the Navier–Stokes equations in the free flow region, and the direct decoupled scheme is used for the other equations. Besides, the stability of the proposed methods is proved. Finally, the high efficiency and applicability of the decoupled scheme are verified by 2D/3D numerical experiments.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer Przybilla, Igor Pontes Duff, Peter Benner
{"title":"Semi-active damping optimization of vibrational systems using the reduced basis method","authors":"Jennifer Przybilla, Igor Pontes Duff, Peter Benner","doi":"10.1007/s10444-024-10141-8","DOIUrl":"10.1007/s10444-024-10141-8","url":null,"abstract":"<div><p>In this article, we consider vibrational systems with semi-active damping that are described by a second-order model. In order to minimize the influence of external inputs to the system response, we are optimizing some damping values. As minimization criterion, we evaluate the energy response, that is the <span>(mathcal {H}_2)</span>-norm of the corresponding transfer function of the system. Computing the energy response includes solving Lyapunov equations for different damping parameters. Hence, the minimization process leads to high computational costs if the system is of large dimension. We present two techniques that reduce the optimization problem by applying the reduced basis method to the corresponding parametric Lyapunov equations. In the first method, we determine a reduced solution space on which the Lyapunov equations and hence the resulting energy response values are computed approximately in a reasonable time. The second method includes the reduced basis method in the minimization process. To evaluate the quality of the approximations, we introduce error estimators that evaluate the error in the controllability Gramians and the energy response. Finally, we illustrate the advantages of our methods by applying them to two different examples.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10141-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A rotational pressure-correction discontinuous Galerkin scheme for the Cahn-Hilliard-Darcy-Stokes system","authors":"Meiting Wang, Guang-an Zou, Jian Li","doi":"10.1007/s10444-024-10151-6","DOIUrl":"10.1007/s10444-024-10151-6","url":null,"abstract":"<div><p>This paper is devoted to the numerical approximations of the Cahn-Hilliard-Darcy-Stokes system, which is a combination of the modified Cahn-Hilliard equation with the Darcy-Stokes equation. A novel discontinuous Galerkin pressure-correction scheme is proposed for solving the coupled system, which can achieve the desired level of linear, fully decoupled, and unconditionally energy stable. The developed scheme here is implemented by combining several effective techniques, including by adding an additional stabilization term artificially in Cahn-Hilliard equation for balancing the explicit treatment of the coupling term, the stabilizing strategy for the nonlinear energy potential, and a rotational pressure-correction scheme for the Darcy-Stokes equation. We rigorously prove the unique solvability, unconditional energy stability, and optimal error estimates of the proposed scheme. Finally, a number of numerical examples are provided to demonstrate numerically the efficiency of the present formulation.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141177501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximation in the extended functional tensor train format","authors":"Christoph Strössner, Bonan Sun, Daniel Kressner","doi":"10.1007/s10444-024-10140-9","DOIUrl":"10.1007/s10444-024-10140-9","url":null,"abstract":"<div><p>This work proposes the extended functional tensor train (EFTT) format for compressing and working with multivariate functions on tensor product domains. Our compression algorithm combines tensorized Chebyshev interpolation with a low-rank approximation algorithm that is entirely based on function evaluations. Compared to existing methods based on the functional tensor train format, the adaptivity of our approach often results in reducing the required storage, sometimes considerably, while achieving the same accuracy. In particular, we reduce the number of function evaluations required to achieve a prescribed accuracy by up to over <span>(96%)</span> compared to the algorithm from Gorodetsky et al. (Comput. Methods Appl. Mech. Eng. <b>347</b>, 59–84 2019).</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10140-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Variable transformations in combination with wavelets and ANOVA for high-dimensional approximation","authors":"Daniel Potts, Laura Weidensager","doi":"10.1007/s10444-024-10147-2","DOIUrl":"10.1007/s10444-024-10147-2","url":null,"abstract":"<div><p>We use hyperbolic wavelet regression for the fast reconstruction of high-dimensional functions having only low-dimensional variable interactions. Compactly supported periodic Chui-Wang wavelets are used for the tensorized hyperbolic wavelet basis on the torus. With a variable transformation, we are able to transform the approximation rates and fast algorithms from the torus to other domains. We perform and analyze scattered data approximation for smooth but arbitrary density functions by using a least squares method. The corresponding system matrix is sparse due to the compact support of the wavelets, which leads to a significant acceleration of the matrix vector multiplication. For non-periodic functions, we propose a new extension method. A proper choice of the extension parameter together with the piecewise polynomial Chui-Wang wavelets extends the functions appropriately. In every case, we are able to bound the approximation error with high probability. Additionally, if the function has a low effective dimension (i.e., only interactions of a few variables), we qualitatively determine the variable interactions and omit ANOVA terms with low variance in a second step in order to decrease the approximation error. This allows us to suggest an adapted model for the approximation. Numerical results show the efficiency of the proposed method.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10147-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141085204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An optimal control framework for adaptive neural ODEs","authors":"Joubine Aghili, Olga Mula","doi":"10.1007/s10444-024-10149-0","DOIUrl":"10.1007/s10444-024-10149-0","url":null,"abstract":"<div><p>In recent years, the notion of neural ODEs has connected deep learning with the field of ODEs and optimal control. In this setting, neural networks are defined as the mapping induced by the corresponding time-discretization scheme of a given ODE. The learning task consists in finding the ODE parameters as the optimal values of a sampled loss minimization problem. In the limit of infinite time steps, and data samples, we obtain a notion of continuous formulation of the problem. The practical implementation involves two discretization errors: a sampling error and a time-discretization error. In this work, we develop a general optimal control framework to analyze the interplay between the above two errors. We prove that to approximate the solution of the fully continuous problem at a certain accuracy, we not only need a minimal number of training samples, but also need to solve the control problem on the sampled loss function with some minimal accuracy. The theoretical analysis allows us to develop rigorous adaptive schemes in time and sampling, and gives rise to a notion of adaptive neural ODEs. The performance of the approach is illustrated in several numerical examples.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141085343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An unfitted finite element method with direct extension stabilization for time-harmonic Maxwell problems on smooth domains","authors":"Fanyi Yang, Xiaoping Xie","doi":"10.1007/s10444-024-10148-1","DOIUrl":"10.1007/s10444-024-10148-1","url":null,"abstract":"<div><p>We propose an unfitted finite element method for numerically solving the time-harmonic Maxwell equations on a smooth domain. The embedded boundary of the domain is allowed to cut through the background mesh arbitrarily. The unfitted scheme is based on a mixed interior penalty formulation, where the Nitsche penalty method is applied to enforce the boundary condition in a weak sense, and a penalty stabilization technique is adopted based on a local direct extension operator to ensure the stability for cut elements. We prove the inf-sup stability and obtain optimal convergence rates under the energy norm and the <span>(L^2)</span> norm for both variables. Numerical examples in both two and three dimensions are presented to illustrate the accuracy of the method.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141085335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A sparse approximation for fractional Fourier transform","authors":"Fang Yang, Jiecheng Chen, Tao Qian, Jiman Zhao","doi":"10.1007/s10444-024-10127-6","DOIUrl":"10.1007/s10444-024-10127-6","url":null,"abstract":"<div><p>The paper promotes a new sparse approximation for fractional Fourier transform, which is based on adaptive Fourier decomposition in Hardy-Hilbert space on the upper half-plane. Under this methodology, the local polynomial Fourier transform characterization of Hardy space is established, which is an analog of the Paley-Wiener theorem. Meanwhile, a sparse fractional Fourier series for chirp <span>( L^2 )</span> function is proposed, which is based on adaptive Fourier decomposition in Hardy-Hilbert space on the unit disk. Besides the establishment of the theoretical foundation, the proposed approximation provides a sparse solution for a forced Schr<span>(ddot{textrm{o}})</span>dinger equations with a harmonic oscillator.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141069489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}