二维/三维闭环地热系统的高效旋转压力校正方案

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Jian Li, Jiawei Gao, Yi Qin
{"title":"二维/三维闭环地热系统的高效旋转压力校正方案","authors":"Jian Li, Jiawei Gao, Yi Qin","doi":"10.1007/s10444-024-10154-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the rotational pressure-correction schemes for the closed-loop geothermal system are developed and analyzed. The primary benefit of this projection method is to replace the incompressible condition. The system is considered consisting of two distinct regions, with the free flow region governed by the Navier–Stokes equations and the porous media region governed by Darcy’s law. At the same time, the heat equations are coupled with the flow equations to describe the heat transfer in both regions. In the closed-loop geothermal system, the rotational pressure-correction schemes are used for the Navier–Stokes equations in the free flow region, and the direct decoupled scheme is used for the other equations. Besides, the stability of the proposed methods is proved. Finally, the high efficiency and applicability of the decoupled scheme are verified by 2D/3D numerical experiments.</p>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient rotational pressure-correction schemes for 2D/3D closed-loop geothermal system\",\"authors\":\"Jian Li, Jiawei Gao, Yi Qin\",\"doi\":\"10.1007/s10444-024-10154-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the rotational pressure-correction schemes for the closed-loop geothermal system are developed and analyzed. The primary benefit of this projection method is to replace the incompressible condition. The system is considered consisting of two distinct regions, with the free flow region governed by the Navier–Stokes equations and the porous media region governed by Darcy’s law. At the same time, the heat equations are coupled with the flow equations to describe the heat transfer in both regions. In the closed-loop geothermal system, the rotational pressure-correction schemes are used for the Navier–Stokes equations in the free flow region, and the direct decoupled scheme is used for the other equations. Besides, the stability of the proposed methods is proved. Finally, the high efficiency and applicability of the decoupled scheme are verified by 2D/3D numerical experiments.</p>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10444-024-10154-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10444-024-10154-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文开发并分析了闭环地热系统的旋转压力校正方案。这种投影方法的主要优点是取代了不可压缩条件。该系统由两个不同的区域组成,其中自由流区域由纳维-斯托克斯方程控制,多孔介质区域由达西定律控制。同时,热方程与流动方程耦合,以描述两个区域的热传递。在闭环地热系统中,自由流区域的纳维-斯托克斯方程采用旋转压力校正方案,其他方程采用直接解耦方案。此外,还证明了所提方法的稳定性。最后,通过二维/三维数值实验验证了解耦方案的高效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient rotational pressure-correction schemes for 2D/3D closed-loop geothermal system

In this paper, the rotational pressure-correction schemes for the closed-loop geothermal system are developed and analyzed. The primary benefit of this projection method is to replace the incompressible condition. The system is considered consisting of two distinct regions, with the free flow region governed by the Navier–Stokes equations and the porous media region governed by Darcy’s law. At the same time, the heat equations are coupled with the flow equations to describe the heat transfer in both regions. In the closed-loop geothermal system, the rotational pressure-correction schemes are used for the Navier–Stokes equations in the free flow region, and the direct decoupled scheme is used for the other equations. Besides, the stability of the proposed methods is proved. Finally, the high efficiency and applicability of the decoupled scheme are verified by 2D/3D numerical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信