用于平滑域上时谐麦克斯韦问题的直接扩展稳定的非拟合有限元方法

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Fanyi Yang, Xiaoping Xie
{"title":"用于平滑域上时谐麦克斯韦问题的直接扩展稳定的非拟合有限元方法","authors":"Fanyi Yang,&nbsp;Xiaoping Xie","doi":"10.1007/s10444-024-10148-1","DOIUrl":null,"url":null,"abstract":"<div><p>We propose an unfitted finite element method for numerically solving the time-harmonic Maxwell equations on a smooth domain. The embedded boundary of the domain is allowed to cut through the background mesh arbitrarily. The unfitted scheme is based on a mixed interior penalty formulation, where the Nitsche penalty method is applied to enforce the boundary condition in a weak sense, and a penalty stabilization technique is adopted based on a local direct extension operator to ensure the stability for cut elements. We prove the inf-sup stability and obtain optimal convergence rates under the energy norm and the <span>\\(L^2\\)</span> norm for both variables. Numerical examples in both two and three dimensions are presented to illustrate the accuracy of the method.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An unfitted finite element method with direct extension stabilization for time-harmonic Maxwell problems on smooth domains\",\"authors\":\"Fanyi Yang,&nbsp;Xiaoping Xie\",\"doi\":\"10.1007/s10444-024-10148-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose an unfitted finite element method for numerically solving the time-harmonic Maxwell equations on a smooth domain. The embedded boundary of the domain is allowed to cut through the background mesh arbitrarily. The unfitted scheme is based on a mixed interior penalty formulation, where the Nitsche penalty method is applied to enforce the boundary condition in a weak sense, and a penalty stabilization technique is adopted based on a local direct extension operator to ensure the stability for cut elements. We prove the inf-sup stability and obtain optimal convergence rates under the energy norm and the <span>\\\\(L^2\\\\)</span> norm for both variables. Numerical examples in both two and three dimensions are presented to illustrate the accuracy of the method.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10148-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10148-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种非拟合有限元方法,用于数值求解光滑域上的时谐麦克斯韦方程。允许域的嵌入边界任意切割背景网格。非拟合方案基于混合内部惩罚公式,其中应用了 Nitsche 惩罚方法来强制执行弱意义上的边界条件,并采用了基于局部直接扩展算子的惩罚稳定技术来确保切割元素的稳定性。我们证明了 inf-sup 稳定性,并获得了能量规范和两个变量的 \(L^2\) 规范下的最佳收敛率。我们给出了二维和三维的数值例子来说明该方法的精确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An unfitted finite element method with direct extension stabilization for time-harmonic Maxwell problems on smooth domains

An unfitted finite element method with direct extension stabilization for time-harmonic Maxwell problems on smooth domains

We propose an unfitted finite element method for numerically solving the time-harmonic Maxwell equations on a smooth domain. The embedded boundary of the domain is allowed to cut through the background mesh arbitrarily. The unfitted scheme is based on a mixed interior penalty formulation, where the Nitsche penalty method is applied to enforce the boundary condition in a weak sense, and a penalty stabilization technique is adopted based on a local direct extension operator to ensure the stability for cut elements. We prove the inf-sup stability and obtain optimal convergence rates under the energy norm and the \(L^2\) norm for both variables. Numerical examples in both two and three dimensions are presented to illustrate the accuracy of the method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信