NanomaterialsPub Date : 2024-03-28DOI: 10.3390/nano14070595
Daitian Tang, Xiqi Peng, Song Wu, Songsong Tang
{"title":"Autonomous Nanorobots as Miniaturized Surgeons for Intracellular Applications","authors":"Daitian Tang, Xiqi Peng, Song Wu, Songsong Tang","doi":"10.3390/nano14070595","DOIUrl":"https://doi.org/10.3390/nano14070595","url":null,"abstract":"Artificial nanorobots have emerged as promising tools for a wide range of biomedical applications, including biosensing, detoxification, and drug delivery. Their unique ability to navigate confined spaces with precise control extends their operational scope to the cellular or subcellular level. By combining tailored surface functionality and propulsion mechanisms, nanorobots demonstrate rapid penetration of cell membranes and efficient internalization, enhancing intracellular delivery capabilities. Moreover, their robust motion within cells enables targeted interactions with intracellular components, such as proteins, molecules, and organelles, leading to superior performance in intracellular biosensing and organelle-targeted cargo delivery. Consequently, nanorobots hold significant potential as miniaturized surgeons capable of directly modulating cellular dynamics and combating metastasis, thereby maximizing therapeutic outcomes for precision therapy. In this review, we provide an overview of the propulsion modes of nanorobots and discuss essential factors to harness propulsive energy from the local environment or external power sources, including structure, material, and engine selection. We then discuss key advancements in nanorobot technology for various intracellular applications. Finally, we address important considerations for future nanorobot design to facilitate their translation into clinical practice and unlock their full potential in biomedical research and healthcare.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"69 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140368981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-03-28DOI: 10.3390/nano14070594
Sajid Sajid, Salem Alzahmi, Nouar Tabet, Yousef Haik, I. Obaidat
{"title":"Fabricating Planar Perovskite Solar Cells through a Greener Approach","authors":"Sajid Sajid, Salem Alzahmi, Nouar Tabet, Yousef Haik, I. Obaidat","doi":"10.3390/nano14070594","DOIUrl":"https://doi.org/10.3390/nano14070594","url":null,"abstract":"High-quality perovskite thin films are typically produced via solvent engineering, which results in efficient perovskite solar cells (PSCs). Nevertheless, the use of hazardous solvents like precursor solvents (N-Methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), dimethylformamide (DMF), gamma-butyrolactone (GBL)) and antisolvents (chlorobenzene (CB), dibutyl ether (DEE), diethyl ether (Et2O), etc.) is crucial to the preparation of perovskite solutions and the control of perovskite thin film crystallization. The consumption of hazardous solvents poses an imminent threat to both the health of manufacturers and the environment. Consequently, before PSCs are commercialized, the current concerns about the toxicity of solvents must be addressed. In this study, we fabricated highly efficient planar PSCs using a novel, environmentally friendly method. Initially, we employed a greener solvent engineering approach that substituted the hazardous precursor solvents with an environmentally friendly solvent called triethyl phosphate (TEP). In the following stage, we fabricated perovskite thin films without the use of an antisolvent by employing a two-step procedure. Of all the greener techniques used to fabricate PSCs, the FTO/SnO2/MAFAPbI3/spiro-OMeTAD planar device configuration yielded the highest PCE of 20.98%. Therefore, this work addresses the toxicity of the solvents used in the perovskite film fabrication procedure and provides a promising universal method for producing PSCs with high efficiency. The aforementioned environmentally friendly approach might allow for PSC fabrication on an industrial scale in the future under sustainable conditions.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"136 49","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140369470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-03-28DOI: 10.3390/nano14070596
Yimo Fan, Jiawei Wang, Aitian Chen, Kai Yu, Mingmin Zhu, Yunxin Han, Sen Zhang, Xianqing Lin, Haomiao Zhou, Xixiang Zhang, Qiang Lin
{"title":"Thickness-Dependent Gilbert Damping and Soft Magnetism in Metal/Co-Fe-B/Metal Sandwich Structure","authors":"Yimo Fan, Jiawei Wang, Aitian Chen, Kai Yu, Mingmin Zhu, Yunxin Han, Sen Zhang, Xianqing Lin, Haomiao Zhou, Xixiang Zhang, Qiang Lin","doi":"10.3390/nano14070596","DOIUrl":"https://doi.org/10.3390/nano14070596","url":null,"abstract":"The achievement of the low Gilbert damping parameter in spin dynamic modulation is attractive for spintronic devices with low energy consumption and high speed. Metallic ferromagnetic alloy Co-Fe-B is a possible candidate due to its high compatibility with spintronic technologies. Here, we report thickness-dependent damping and soft magnetism in Co-Fe-B films sandwiched between two non-magnetic layers with Co-Fe-B films up to 50 nm thick. A non-monotonic variation of Co-Fe-B film damping with thickness is observed, which is in contrast to previously reported monotonic trends. The minimum damping and the corresponding Co-Fe-B thickness vary significantly among the different non-magnetic layer series, indicating that the structure selection significantly alters the relative contributions of various damping mechanisms. Thus, we developed a quantitative method to distinguish intrinsic from extrinsic damping via ferromagnetic resonance measurements of thickness-dependent damping rather than the traditional numerical calculation method. By separating extrinsic and intrinsic damping, each mechanism affecting the total damping of Co-Fe-B films in sandwich structures is analyzed in detail. Our findings have revealed that the thickness-dependent damping measurement is an effective tool for quantitatively investigating different damping mechanisms. This investigation provides an understanding of underlying mechanisms and opens up avenues for achieving low damping in Co-Fe-B alloy film, which is beneficial for the applications in spintronic devices design and optimization.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"91 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140371030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-03-28DOI: 10.3390/nano14070602
A. Mostovoy, A. Bekeshev, Sergey Brudnik, A. Yakovlev, Andrey Shcherbakov, Nurgul Zhanturina, Arai K. Zhumabekova, Elena Yakovleva, Vitaly Tseluikin, M. Lopukhova
{"title":"Studying the Structure and Properties of Epoxy Composites Modified by Original and Functionalized with Hexamethylenediamine by Electrochemically Synthesized Graphene Oxide","authors":"A. Mostovoy, A. Bekeshev, Sergey Brudnik, A. Yakovlev, Andrey Shcherbakov, Nurgul Zhanturina, Arai K. Zhumabekova, Elena Yakovleva, Vitaly Tseluikin, M. Lopukhova","doi":"10.3390/nano14070602","DOIUrl":"https://doi.org/10.3390/nano14070602","url":null,"abstract":"In this study, we used multilayer graphene oxide (GO) obtained by anodic oxidation of graphite powder in 83% sulfuric acid. The modification of GO was carried out by its interaction with hexamethylenediamine (HMDA) according to the mechanism of nucleophilic substitution between the amino group of HMDA (HMDA) and the epoxy groups of GO, accompanied by partial reduction of multilayer GO and an increase in the deformation of the carbon layers. The structure and properties of modified HMDA-GO were characterized using research methods such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy and Raman spectroscopy. The conducted studies show the effectiveness of using HMDA-OG for modifying epoxy composites. Functionalizing treatment of GO particles helps reduce the free surface energy at the polymer–nanofiller interface and increase adhesion, which leads to the improvement in physical and mechanical characteristics of the composite material. The results demonstrate an increase in the strength and elastic modulus in bending by 48% and 102%, respectively, an increase in the impact strength by 122%, and an increase in the strength and elastic modulus in tension by 82% and 47%, respectively, as compared to the pristine epoxy composite which did not contain GO-HMDA. It has been found that the addition of GO-HMDA into the epoxy composition initiates the polymerization process due to the participation of reactive amino groups in the polymerization reaction, and also provides an increase in the thermal stability of epoxy nanocomposites.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140373318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-03-28DOI: 10.3390/nano14070601
Nikolaos Kostoglou, S. Stock, Angelos Solomi, D. Holzapfel, S. Hinder, M. Baker, Georgios Constantinides, Vladislav Ryzhkov, J. Maletaskic, B. Matovic, Jochen M. Schneider, Claus Rebholz, Christian Mitterer
{"title":"The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets","authors":"Nikolaos Kostoglou, S. Stock, Angelos Solomi, D. Holzapfel, S. Hinder, M. Baker, Georgios Constantinides, Vladislav Ryzhkov, J. Maletaskic, B. Matovic, Jochen M. Schneider, Claus Rebholz, Christian Mitterer","doi":"10.3390/nano14070601","DOIUrl":"https://doi.org/10.3390/nano14070601","url":null,"abstract":"This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in high-temperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m2/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry. Results indicated that the thermal stability and oxidation resistance of the synthesized materials were improved by up to ~13.5% (or by 120 °C) with an increase in purity. Furthermore, the reference material with its high purity and low surface area (~4 m2/g) showed superior performance, which was attributed to the minimized reactive sites for oxygen diffusion due to lower surface area availability and fewer possible defects, highlighting the critical roles of both sample purity and accessible surface area in h-BN thermo-oxidative stability. These findings highlight the importance of focusing on purity and surface area control in developing BN-based nanomaterials, offering a path to enhance their performance in extreme thermal and oxidative conditions.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"126 39","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140370317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-03-28DOI: 10.3390/nano14070600
Andrea C. Bardales, Quynh Vo, Dmitry M Kolpashchikov
{"title":"Singleton {NOT} and Doubleton {YES; NOT} Gates Act as Functionally Complete Sets in DNA-Integrated Computational Circuits","authors":"Andrea C. Bardales, Quynh Vo, Dmitry M Kolpashchikov","doi":"10.3390/nano14070600","DOIUrl":"https://doi.org/10.3390/nano14070600","url":null,"abstract":"A functionally complete Boolean operator is sufficient for computational circuits of arbitrary complexity. We connected YES (buffer) with NOT (inverter) and two NOT four-way junction (4J) DNA gates to obtain IMPLY and NAND Boolean functions, respectively, each of which represents a functionally complete gate. The results show a technological path towards creating a DNA computational circuit of arbitrary complexity based on singleton NOT or a combination of NOT and YES gates, which is not possible in electronic computers. We, therefore, concluded that DNA-based circuits and molecular computation may offer opportunities unforeseen in electronics.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"12 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140372418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-03-28DOI: 10.3390/nano14070597
Billy Shu Hieng Tie, Eyman Manaf, Elaine Halligan, Shuo Zhuo, Gavin Keane, J. Geever, Luke M. Geever
{"title":"The Effects of Incorporating Nanoclay in NVCL-NIPAm Hydrogels on Swelling Behaviours and Mechanical Properties","authors":"Billy Shu Hieng Tie, Eyman Manaf, Elaine Halligan, Shuo Zhuo, Gavin Keane, J. Geever, Luke M. Geever","doi":"10.3390/nano14070597","DOIUrl":"https://doi.org/10.3390/nano14070597","url":null,"abstract":"Following the formulation development from a previous study utilising N-vinylcaprolactam (NVCL) and N-isopropylacrylamide (NIPAm) as monomers, poly(ethylene glycol) dimethacrylate (PEGDMA) as a chemical crosslinker, and Irgacure 2959 as photoinitiator, nanoclay (NC) is now incorporated into the selected formulation for enhanced mechanical performance and swelling ability. In this research, two types of NC, hydrophilic bentonite nanoclay (NCB) and surface-modified nanoclay (NCSM) of several percentages, were included in the formulation. The prepared mixtures were photopolymerised, and the fabricated gels were characterised through Fourier transform infrared spectroscopy (FTIR), cloud-point measurements, ultraviolet (UV) spectroscopy, pulsatile swelling, rheological analysis, and scanning electron microscopy (SEM). Furthermore, the effect of swelling temperature, NC types, and NC concentration on the hydrogels’ swelling ratio was studied through a full-factorial design of experiment (DOE). The successful photopolymerised NC-incorporated NVCL-NIPAm hydrogels retained the same lower critical solution temperature (LCST) as previously. Rheological analysis and SEM described the improved mechanical strength and polymer orientation of gels with any NCB percentage and low NCSM percentage. Finally, the temperature displayed the most significant effect on the hydrogels’ swelling ability, followed by the NC types and NC concentration. Introducing NC to hydrogels could potentially make them suitable for applications that require good mechanical performance.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"36 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140372449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-03-27DOI: 10.3390/nano14070586
Haigen Gao, Yu Tang, Qilong Liao, Xiangyu Zhao, Bing Wang
{"title":"First-Principles Study on Evolution of Magnetic Domain in Two-Dimensional BaTiO3 Ultrathin Film Doped with Co under Electric Field","authors":"Haigen Gao, Yu Tang, Qilong Liao, Xiangyu Zhao, Bing Wang","doi":"10.3390/nano14070586","DOIUrl":"https://doi.org/10.3390/nano14070586","url":null,"abstract":"The magnetization mechanism of Co-doped BaTiO3 ultrathin films is a subject of debate, which results in difficulties with the design of new multiferroics based on BaTiO3 matrixes. With the aid of a first-principles approach, it was observed that when the interstitial site and Ti vacancy were filled with Co, the configuration behaved in a nonmagnetic manner, indicating the significance of the Co content. Moreover, in the case of Co substituting two neighboring Ti atoms, when a direct current field was applied in the [100] direction, the magnetic domains excluding those in the [100], [010], and [001] directions were directed away. Further, the magnetoelectric constant was evaluated at ~449.3 mV/cmOe, showing strong magnetoelectric coupling at room temperature. Clearly, our study indicates that strict control of Ba, Ti, O, and Co stoichiometry can induce an electric and magnetic field conversion in two-dimensional BaTiO3 and may provide a new candidate for single-phase multiferroics for application in next-generation multifunctional devices.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"74 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140376129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-03-27DOI: 10.3390/nano14070592
Omer Arif, Laura Canal, Elena Ferrari, Claudio Ferrari, L. Lazzarini, Lucia Nasi, A. Paghi, Stefan Heun, L. Sorba
{"title":"Influence of an Overshoot Layer on the Morphological, Structural, Strain, and Transport Properties of InAs Quantum Wells","authors":"Omer Arif, Laura Canal, Elena Ferrari, Claudio Ferrari, L. Lazzarini, Lucia Nasi, A. Paghi, Stefan Heun, L. Sorba","doi":"10.3390/nano14070592","DOIUrl":"https://doi.org/10.3390/nano14070592","url":null,"abstract":"InAs quantum wells (QWs) are promising material systems due to their small effective mass, narrow bandgap, strong spin–orbit coupling, large g-factor, and transparent interface to superconductors. Therefore, they are promising candidates for the implementation of topological superconducting states. Despite this potential, the growth of InAs QWs with high crystal quality and well-controlled morphology remains challenging. Adding an overshoot layer at the end of the metamorphic buffer layer, i.e., a layer with a slightly larger lattice constant than the active region of the device, helps to overcome the residual strain and provides optimally relaxed lattice parameters for the QW. In this work, we systematically investigated the influence of overshoot layer thickness on the morphological, structural, strain, and transport properties of undoped InAs QWs on GaAs(100) substrates. Transmission electron microscopy reveals that the metamorphic buffer layer, which includes the overshoot layer, provides a misfit dislocation-free InAs QW active region. Moreover, the residual strain in the active region is compressive in the sample with a 200 nm-thick overshoot layer but tensile in samples with an overshoot layer thicker than 200 nm, and it saturates to a constant value for overshoot layer thicknesses above 350 nm. We found that electron mobility does not depend on the crystallographic directions. A maximum electron mobility of 6.07 × 105 cm2/Vs at 2.6 K with a carrier concentration of 2.31 × 1011 cm−2 in the sample with a 400 nm-thick overshoot layer has been obtained.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"19 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140374050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-03-27DOI: 10.3390/nano14070588
Andreea Hortolomeu, Diana-Carmen Mirila, Ana-Maria Roșu, F. Nedeff, Iuri Scutaru, Dorel Ureche, R. Sturza, Adriana-Luminița Fînar, I. Nistor
{"title":"Chemically Modified Clay Adsorbents Used in the Retention of Protein and Polyphenolic Compounds from Sauvignon Blanc White Wine","authors":"Andreea Hortolomeu, Diana-Carmen Mirila, Ana-Maria Roșu, F. Nedeff, Iuri Scutaru, Dorel Ureche, R. Sturza, Adriana-Luminița Fînar, I. Nistor","doi":"10.3390/nano14070588","DOIUrl":"https://doi.org/10.3390/nano14070588","url":null,"abstract":"During the manufacturing process of white wine, various physicochemical reactions can occur and can affect the quality of the finished product. For this reason, it is necessary to apply different treatments to minimize distinct factors such as protein instability and pinking phenomenon, which can affect the organoleptic properties of wines and their structure. In this work, a new method for the preparation of a sorbent-type material is presented through the fractional purification of native bentonite in three fractions (Na-BtF1, Na-BtF2, and Na-BtF3). Furthermore, the influence of the prepared sorbents on pH, conductivity, and amino nitrogen level was analyzed. The absorbents prepared and tested in wine solutions were characterized using the following physico-chemical methods: Brunauer–Emmett–Teller and Barrett–Joyner–Halenda (BET-BJH) method, X-ray diffraction (XRD) technique, and transform-coupled infrared spectroscopy Fourier with attenuated total reflection (FTIR-ATR). Following the analyses carried out on the retention of protein content and polyphenolic compounds, it was found that materials based on natural clay have suitable adsorption properties.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"62 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140376626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}