Influence of an Overshoot Layer on the Morphological, Structural, Strain, and Transport Properties of InAs Quantum Wells

Nanomaterials Pub Date : 2024-03-27 DOI:10.3390/nano14070592
Omer Arif, Laura Canal, Elena Ferrari, Claudio Ferrari, L. Lazzarini, Lucia Nasi, A. Paghi, Stefan Heun, L. Sorba
{"title":"Influence of an Overshoot Layer on the Morphological, Structural, Strain, and Transport Properties of InAs Quantum Wells","authors":"Omer Arif, Laura Canal, Elena Ferrari, Claudio Ferrari, L. Lazzarini, Lucia Nasi, A. Paghi, Stefan Heun, L. Sorba","doi":"10.3390/nano14070592","DOIUrl":null,"url":null,"abstract":"InAs quantum wells (QWs) are promising material systems due to their small effective mass, narrow bandgap, strong spin–orbit coupling, large g-factor, and transparent interface to superconductors. Therefore, they are promising candidates for the implementation of topological superconducting states. Despite this potential, the growth of InAs QWs with high crystal quality and well-controlled morphology remains challenging. Adding an overshoot layer at the end of the metamorphic buffer layer, i.e., a layer with a slightly larger lattice constant than the active region of the device, helps to overcome the residual strain and provides optimally relaxed lattice parameters for the QW. In this work, we systematically investigated the influence of overshoot layer thickness on the morphological, structural, strain, and transport properties of undoped InAs QWs on GaAs(100) substrates. Transmission electron microscopy reveals that the metamorphic buffer layer, which includes the overshoot layer, provides a misfit dislocation-free InAs QW active region. Moreover, the residual strain in the active region is compressive in the sample with a 200 nm-thick overshoot layer but tensile in samples with an overshoot layer thicker than 200 nm, and it saturates to a constant value for overshoot layer thicknesses above 350 nm. We found that electron mobility does not depend on the crystallographic directions. A maximum electron mobility of 6.07 × 105 cm2/Vs at 2.6 K with a carrier concentration of 2.31 × 1011 cm−2 in the sample with a 400 nm-thick overshoot layer has been obtained.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"19 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nano14070592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

InAs quantum wells (QWs) are promising material systems due to their small effective mass, narrow bandgap, strong spin–orbit coupling, large g-factor, and transparent interface to superconductors. Therefore, they are promising candidates for the implementation of topological superconducting states. Despite this potential, the growth of InAs QWs with high crystal quality and well-controlled morphology remains challenging. Adding an overshoot layer at the end of the metamorphic buffer layer, i.e., a layer with a slightly larger lattice constant than the active region of the device, helps to overcome the residual strain and provides optimally relaxed lattice parameters for the QW. In this work, we systematically investigated the influence of overshoot layer thickness on the morphological, structural, strain, and transport properties of undoped InAs QWs on GaAs(100) substrates. Transmission electron microscopy reveals that the metamorphic buffer layer, which includes the overshoot layer, provides a misfit dislocation-free InAs QW active region. Moreover, the residual strain in the active region is compressive in the sample with a 200 nm-thick overshoot layer but tensile in samples with an overshoot layer thicker than 200 nm, and it saturates to a constant value for overshoot layer thicknesses above 350 nm. We found that electron mobility does not depend on the crystallographic directions. A maximum electron mobility of 6.07 × 105 cm2/Vs at 2.6 K with a carrier concentration of 2.31 × 1011 cm−2 in the sample with a 400 nm-thick overshoot layer has been obtained.
过冲层对 InAs 量子阱形态、结构、应变和传输特性的影响
砷化铟量子阱(QWs)具有有效质量小、带隙窄、自旋轨道耦合强、g 因子大以及超导体界面透明等特点,是一种很有前途的材料系统。因此,它们是实现拓扑超导态的理想候选材料。尽管具有这样的潜力,但要生长出具有高晶体质量和良好形态控制的 InAs QWs 仍然充满挑战。在变质缓冲层末端添加超调层(即晶格常数略大于器件有源区的一层)有助于克服残余应变,并为 QW 提供最佳松弛晶格参数。在这项工作中,我们系统地研究了过冲层厚度对 GaAs(100)衬底上未掺杂 InAs QW 的形貌、结构、应变和传输特性的影响。透射电子显微镜显示,包括过冲层在内的变质缓冲层提供了无错配位错的 InAs QW 有源区。此外,在厚度为 200 nm 的过冲层样品中,有源区的残余应变是压缩应变,而在厚度大于 200 nm 的过冲层样品中,残余应变则是拉伸应变。我们发现电子迁移率与晶体学方向无关。在具有 400 nm 厚过冲层的样品中,载流子浓度为 2.31 × 1011 cm-2 时,2.6 K 的最大电子迁移率为 6.07 × 105 cm2/Vs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信