Algebra & Number Theory最新文献

筛选
英文 中文
Maximal subgroups of exceptional groups and Quillen’s dimension 特殊群的最大子群和奎伦维度
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-06-13 DOI: 10.2140/ant.2024.18.1375
Kevin I. Piterman
{"title":"Maximal subgroups of exceptional groups and Quillen’s dimension","authors":"Kevin I. Piterman","doi":"10.2140/ant.2024.18.1375","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1375","url":null,"abstract":"<p>Given a finite group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> and a prime <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>, let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒜</mi></mrow><mrow><mspace width=\"-0.17em\"></mspace><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math> be the poset of nontrivial elementary abelian <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-subgroups of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math>. The group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> satisfies the Quillen dimension property at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒜</mi></mrow><mrow><mspace width=\"-0.17em\"></mspace><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math> has nonzero homology in the maximal possible degree, which is the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-rank of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> minus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn></math>. For example, D. Quillen showed that solvable groups with trivial <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-core satisfy this property, and later, M. Aschbacher and S. D. Smith provided a list of all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-extensions of simple groups that may fail this property if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> is odd. In particular, a group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> with this property satisfies Quillen’s conjecture: <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi></math> has trivial <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-core and the poset <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">𝒜</mi></mrow><mrow><mspace width=\"-0.17em\"></mspace><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math> is not contractible. </p><p> In this article, we focus on the prime <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\u0000<mo>=</mo> <mn>2</mn></math> and prove that the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn></math>-extensions of finite simple groups of exceptional Lie type in odd characteristic satisfy the Quillen dimension property, wit","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"21 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serre weights for three-dimensional wildly ramified Galois representations 三维野生斜切伽罗瓦表示的塞尔权重
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-06-13 DOI: 10.2140/ant.2024.18.1221
Daniel Le, Bao V. Le Hung, Brandon Levin, Stefano Morra
{"title":"Serre weights for three-dimensional wildly ramified Galois representations","authors":"Daniel Le, Bao V. Le Hung, Brandon Levin, Stefano Morra","doi":"10.2140/ant.2024.18.1221","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1221","url":null,"abstract":"<p>We formulate and prove the weight part of Serre’s conjecture for three-dimensional mod <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> Galois representations under a genericity condition when the field is unramified at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>. This removes the assumption made previously that the representation be tamely ramified at <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>. We also prove a version of Breuil’s lattice conjecture and a mod <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> multiplicity one result for the cohomology of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>U</mi><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math>-arithmetic manifolds. The key input is a study of the geometry of the Emerton–Gee stacks using the local models we introduced previously (2023). </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"28 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyhedral and tropical geometry of flag positroids 旗正多面体的多面体几何和热带几何
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-06-13 DOI: 10.2140/ant.2024.18.1333
Jonathan Boretsky, Christopher Eur, Lauren Williams
{"title":"Polyhedral and tropical geometry of flag positroids","authors":"Jonathan Boretsky, Christopher Eur, Lauren Williams","doi":"10.2140/ant.2024.18.1333","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1333","url":null,"abstract":"&lt;p&gt;A &lt;span&gt;flag positroid &lt;/span&gt;of ranks &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mstyle mathvariant=\"bold-italic\"&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mstyle&gt;\u0000&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;\u0000&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;\u0000&lt;mo&gt;&lt;&lt;/mo&gt;\u0000&lt;mo&gt;⋯&lt;/mo&gt;\u0000&lt;mo&gt;&lt;&lt;/mo&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt; on &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mo stretchy=\"false\"&gt;[&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;]&lt;/mo&gt;&lt;/math&gt; is a flag matroid that can be realized by a real &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;\u0000&lt;mo&gt;×&lt;/mo&gt;\u0000&lt;mi&gt;n&lt;/mi&gt;&lt;/math&gt; matrix &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt; such that the &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;\u0000&lt;mo&gt;×&lt;/mo&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; minors of &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt; involving rows &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;…&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt;&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt; are nonnegative for all &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn&gt;1&lt;/mn&gt;\u0000&lt;mo&gt;≤&lt;/mo&gt;\u0000&lt;mi&gt;i&lt;/mi&gt;\u0000&lt;mo&gt;≤&lt;/mo&gt;\u0000&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;. In this paper we explore the polyhedral and tropical geometry of flag positroids, particularly when &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mstyle mathvariant=\"bold-italic\"&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mstyle&gt;\u0000&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;\u0000&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;\u0000&lt;mo&gt;+&lt;/mo&gt; &lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;…&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt;&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt; is a sequence of consecutive numbers. In this case we show that the nonnegative tropical flag variety &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt; TrFl&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mstyle mathvariant=\"bold-italic\"&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mstyle&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt; equals the nonnegative flag Dressian &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt; FlDr&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt; &lt;/mo&gt;&lt;!--nolimits--&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mstyle mathvariant=\"bold-italic\"&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mstyle&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;, and that the points &lt;math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;μ&lt;/mi&gt;\u0000&lt;mo&gt;=&lt;/mo&gt;\u0000&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;…&lt;/mi&gt;&lt;mo&gt; ⁡&lt;!--FUNCTION APPLICATION--&gt;&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"22 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refined height pairing 精致的高度搭配
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-30 DOI: 10.2140/ant.2024.18.1039
Bruno Kahn
{"title":"Refined height pairing","authors":"Bruno Kahn","doi":"10.2140/ant.2024.18.1039","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1039","url":null,"abstract":"<p>For a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math>-dimensional regular proper variety <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> over the function field of a smooth variety <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>B</mi></math> over a field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> and for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>i</mi>\u0000<mo>≥</mo> <mn>0</mn></math>, we define a subgroup <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi> CH</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>i</mi></mrow></msup><msup><mrow><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo></mrow></msup></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi> CH</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>i</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo></math> and construct a “refined height pairing” </p>\u0000<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\u0000<msup><mrow><mi>CH</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>i</mi></mrow></msup><msup><mrow><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo></mrow></msup>\u0000<mo>×</mo><msup><mrow><mi> CH</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>i</mi></mrow></msup><msup><mrow><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo></mrow></msup>\u0000<mo>→</mo><msup><mrow><mi> CH</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi>B</mi><mo stretchy=\"false\">)</mo>\u0000</math>\u0000</div>\u0000<p> in the category of abelian groups up to isogeny. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>i</mi>\u0000<mo>=</mo> <mn>1</mn><mo>,</mo><mi>d</mi></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi> CH</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>i</mi></mrow></msup><msup><mrow><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo></mrow></msup></math> is the group of cycles numerically equivalent to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>0</mn></math>. This pairing relates to pairings defined by P. Schneider and A. Beilinson if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>B</mi></math> is a curve, to a refined height defined by ","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"70 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Balmer spectra and Drinfeld centers 巴尔默光谱和德林菲尔德中心
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-30 DOI: 10.2140/ant.2024.18.1081
Kent B. Vashaw
{"title":"Balmer spectra and Drinfeld centers","authors":"Kent B. Vashaw","doi":"10.2140/ant.2024.18.1081","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1081","url":null,"abstract":"<p>The Balmer spectrum of a monoidal triangulated category is an important geometric construction which is closely related to the problem of classifying thick tensor ideals. We prove that the forgetful functor from the Drinfeld center of a finite tensor category <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>C</mi></mstyle></math> to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mstyle mathvariant=\"bold-italic\"><mi>C</mi></mstyle></math> extends to a monoidal triangulated functor between their corresponding stable categories, and induces a continuous map between their Balmer spectra. We give conditions under which it is injective, surjective, or a homeomorphism. We apply this general theory to prove that Balmer spectra associated to finite-dimensional cosemisimple quasitriangular Hopf algebras (in particular, group algebras in characteristic dividing the order of the group) coincide with the Balmer spectra associated to their Drinfeld doubles, and that the thick ideals of both categories are in bijection. An analogous theorem is proven for certain Benson–Witherspoon smash coproduct Hopf algebras, which are not quasitriangular in general. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"58 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the p-adic interpolation of unitary Friedberg–Jacquet periods 论单位弗里德伯格-雅克特周期的 p-adic 插值法
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-30 DOI: 10.2140/ant.2024.18.1117
Andrew Graham
{"title":"On the p-adic interpolation of unitary Friedberg–Jacquet periods","authors":"Andrew Graham","doi":"10.2140/ant.2024.18.1117","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1117","url":null,"abstract":"<p>We establish functoriality of higher Coleman theory for certain unitary Shimura varieties and use this to construct a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic analytic function interpolating unitary Friedberg–Jacquet periods. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"19 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enumeration of conjugacy classes in affine groups 仿射群中共轭类的枚举
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-30 DOI: 10.2140/ant.2024.18.1189
Jason Fulman, Robert M. Guralnick
{"title":"Enumeration of conjugacy classes in affine groups","authors":"Jason Fulman, Robert M. Guralnick","doi":"10.2140/ant.2024.18.1189","DOIUrl":"https://doi.org/10.2140/ant.2024.18.1189","url":null,"abstract":"<p>We study the conjugacy classes of the classical affine groups. We derive generating functions for the number of classes analogous to formulas of Wall and the authors for the classical groups. We use these to get good upper bounds for the number of classes. These naturally come up as difficult cases in the study of the noncoprime <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mi>V</mi>\u0000<mo stretchy=\"false\">)</mo></math> problem of Brauer. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"6 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140817935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Locally analytic vector bundles on the Fargues–Fontaine curve 法尔古斯-方丹曲线上的局部解析向量束
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-16 DOI: 10.2140/ant.2024.18.899
Gal Porat
{"title":"Locally analytic vector bundles on the Fargues–Fontaine curve","authors":"Gal Porat","doi":"10.2140/ant.2024.18.899","DOIUrl":"https://doi.org/10.2140/ant.2024.18.899","url":null,"abstract":"<p>We develop a version of Sen theory for equivariant vector bundles on the Fargues–Fontaine curve. We show that every equivariant vector bundle canonically descends to a locally analytic vector bundle. A comparison with the theory of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>φ</mi><mo>,</mo><mi>Γ</mi><mo stretchy=\"false\">)</mo></math>-modules in the cyclotomic case then recovers the Cherbonnier–Colmez decompletion theorem. Next, we focus on the subcategory of de Rham locally analytic vector bundles. Using the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic monodromy theorem, we show that each locally analytic vector bundle <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">ℰ</mi></math> has a canonical differential equation for which the space of solutions has full rank. As a consequence, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"bold-script\">ℰ</mi></math> and its sheaf of solutions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> Sol</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi mathvariant=\"bold-script\">ℰ</mi><mo stretchy=\"false\">)</mo></math> are in a natural correspondence, which gives a geometric interpretation of a result of Berger on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>φ</mi><mo>,</mo><mi>Γ</mi><mo stretchy=\"false\">)</mo></math>-modules. In particular, if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi> </math> is a de Rham Galois representation, its associated filtered <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>φ</mi><mo>,</mo><mi>N</mi><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mspace width=\"-0.17em\"></mspace><mi>K</mi></mrow></msub><mo stretchy=\"false\">)</mo></math>-module is realized as the space of global solutions to the differential equation. A key to our approach is a vanishing result for the higher locally analytic vectors of representations satisfying the Tate–Sen formalism, which is also of independent interest. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"48 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theta correspondence and simple factors in global Arthur parameters 全局阿瑟参数中的 Theta 对应和简单因子
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-16 DOI: 10.2140/ant.2024.18.969
Chenyan Wu
{"title":"Theta correspondence and simple factors in global Arthur parameters","authors":"Chenyan Wu","doi":"10.2140/ant.2024.18.969","DOIUrl":"https://doi.org/10.2140/ant.2024.18.969","url":null,"abstract":"<p>By using results on poles of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions and theta correspondence, we give a bound on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math> for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mi>χ</mi><mo>,</mo><mi>b</mi><mo stretchy=\"false\">)</mo></math>-factors of the global Arthur parameter of a cuspidal automorphic representation <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math> of a classical group or a metaplectic group where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>χ</mi></math> is a conjugate self-dual automorphic character and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>b</mi></math> is an integer which is the dimension of an irreducible representation of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> SL</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math>. We derive a more precise relation when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math> lies in a generic global <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math>-packet. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"25 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equidistribution theorems for holomorphic Siegel cusp forms of general degree: the level aspect 一般度数的全态西格尔尖顶形式的等分布定理:水平方面
IF 1.3 1区 数学
Algebra & Number Theory Pub Date : 2024-04-16 DOI: 10.2140/ant.2024.18.993
Henry H. Kim, Satoshi Wakatsuki, Takuya Yamauchi
{"title":"Equidistribution theorems for holomorphic Siegel cusp forms of general degree: the level aspect","authors":"Henry H. Kim, Satoshi Wakatsuki, Takuya Yamauchi","doi":"10.2140/ant.2024.18.993","DOIUrl":"https://doi.org/10.2140/ant.2024.18.993","url":null,"abstract":"<p>This paper is an extension of Kim et al. (2020a), and we prove equidistribution theorems for families of holomorphic Siegel cusp forms of general degree in the level aspect. Our main contribution is to estimate unipotent contributions for general degree in the geometric side of Arthur’s invariant trace formula in terms of Shintani zeta functions in a uniform way. Several applications, including the vertical Sato–Tate theorem and low-lying zeros for standard <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi></math>-functions of holomorphic Siegel cusp forms, are discussed. We also show that the “nongenuine forms”, which come from nontrivial endoscopic contributions by Langlands functoriality classified by Arthur, are negligible. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"25 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信