无环四元组表示的 Harder-Narasimhan 滤波的确定性算法

IF 0.9 1区 数学 Q2 MATHEMATICS
Chi-Yu Cheng
{"title":"无环四元组表示的 Harder-Narasimhan 滤波的确定性算法","authors":"Chi-Yu Cheng","doi":"10.2140/ant.2024.18.319","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math> be a representation of an acyclic quiver <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi></math> over an infinite field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>. We establish a deterministic algorithm for computing the Harder–Narasimhan filtration of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>. The algorithm is polynomial in the dimensions of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>, the weights that induce the Harder–Narasimhan filtration of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>, and the number of paths in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Q</mi></math>. As a direct application, we also show that when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math> is algebraically closed and when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math> is unstable, the same algorithm produces Kempf’s maximally destabilizing one parameter subgroups for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>M</mi></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"2 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deterministic algorithm for Harder–Narasimhan filtrations for representations of acyclic quivers\",\"authors\":\"Chi-Yu Cheng\",\"doi\":\"10.2140/ant.2024.18.319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>M</mi></math> be a representation of an acyclic quiver <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Q</mi></math> over an infinite field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math>. We establish a deterministic algorithm for computing the Harder–Narasimhan filtration of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>M</mi></math>. The algorithm is polynomial in the dimensions of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>M</mi></math>, the weights that induce the Harder–Narasimhan filtration of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>M</mi></math>, and the number of paths in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Q</mi></math>. As a direct application, we also show that when <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math> is algebraically closed and when <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>M</mi></math> is unstable, the same algorithm produces Kempf’s maximally destabilizing one parameter subgroups for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>M</mi></math>. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.319\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.319","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一种计算 M 的 Harder-Narasimhan 滤波的确定性算法。该算法与 M 的维数、诱导 M 的 Harder-Narasimhan 滤波的权重以及 Q 中的路径数都是多项式关系。作为直接应用,我们还证明了当 k 在代数上是封闭的且 M 是不稳定的时候,同样的算法可以为 M 生成肯普夫的最大不稳定一参数子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deterministic algorithm for Harder–Narasimhan filtrations for representations of acyclic quivers

Let M be a representation of an acyclic quiver Q over an infinite field k. We establish a deterministic algorithm for computing the Harder–Narasimhan filtration of M. The algorithm is polynomial in the dimensions of M, the weights that induce the Harder–Narasimhan filtration of M, and the number of paths in Q. As a direct application, we also show that when k is algebraically closed and when M is unstable, the same algorithm produces Kempf’s maximally destabilizing one parameter subgroups for M.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信