{"title":"论 Borovoi-Kunyavskii 均质空间","authors":"Mạnh Linh Nguyễn","doi":"10.2140/ant.2024.18.349","DOIUrl":null,"url":null,"abstract":"<p>Nous établissons le principe de Hasse et l’approximation faible pour certains espaces homogènes de <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> SL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>m</mi></mrow></msub></math> à stabilisateur géométrique nilpotent de classe 2, construits par Borovoi et Kunyavskii. Ces espaces homogènes vérifient donc une conjecture de Colliot-Thélène concernant l’obstruction de Brauer–Manin pour les variétés géométriquement rationnellement connexes. </p><p> We establish the Hasse principle and the weak approximation property for certain homogeneous spaces of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> SL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>m</mi></mrow></msub></math> whose geometric stabilizer is of nilpotency class 2, which were constructed by Borovoi and Kunyavskii. These homogeneous spaces verify thus a conjecture of Colliot-Thélène on the Brauer–Manin obstruction for geometrically rationally connected varieties. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"4 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sur les espaces homogènes de Borovoi–Kunyavskii\",\"authors\":\"Mạnh Linh Nguyễn\",\"doi\":\"10.2140/ant.2024.18.349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nous établissons le principe de Hasse et l’approximation faible pour certains espaces homogènes de <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> SL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>m</mi></mrow></msub></math> à stabilisateur géométrique nilpotent de classe 2, construits par Borovoi et Kunyavskii. Ces espaces homogènes vérifient donc une conjecture de Colliot-Thélène concernant l’obstruction de Brauer–Manin pour les variétés géométriquement rationnellement connexes. </p><p> We establish the Hasse principle and the weak approximation property for certain homogeneous spaces of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> SL</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>m</mi></mrow></msub></math> whose geometric stabilizer is of nilpotency class 2, which were constructed by Borovoi and Kunyavskii. These homogeneous spaces verify thus a conjecture of Colliot-Thélène on the Brauer–Manin obstruction for geometrically rationally connected varieties. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.349\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.349","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们为博罗沃伊和库尼亚夫斯基构建的具有第 2 类无势几何稳定器的 SL m 的某些均相空间建立了哈斯原理和弱逼近。因此,这些均相空间验证了科里奥-泰莱(Colliot-Thélène)关于几何有理连接变体的布劳尔-马宁障碍的猜想。 我们为鲍罗沃伊和库尼亚夫斯基构造的几何稳定子为零势类 2 的 SL m 的某些均相空间建立了哈斯原理和弱逼近性质。因此,这些均相空间验证了科里奥-泰莱(Colliot-Thélène)关于几何有理连接变体的布劳尔-马宁障碍的猜想。
Nous établissons le principe de Hasse et l’approximation faible pour certains espaces homogènes de à stabilisateur géométrique nilpotent de classe 2, construits par Borovoi et Kunyavskii. Ces espaces homogènes vérifient donc une conjecture de Colliot-Thélène concernant l’obstruction de Brauer–Manin pour les variétés géométriquement rationnellement connexes.
We establish the Hasse principle and the weak approximation property for certain homogeneous spaces of whose geometric stabilizer is of nilpotency class 2, which were constructed by Borovoi and Kunyavskii. These homogeneous spaces verify thus a conjecture of Colliot-Thélène on the Brauer–Manin obstruction for geometrically rationally connected varieties.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.