Anatomical Record最新文献

筛选
英文 中文
Vertebral morphology and intracolumnar variation of the iconic African viperid snake Atheris (Serpentes, Viperidae). 非洲标志性蝰蛇 Atheris(蛇类,蝰科)的脊椎形态和柱内变异。
4区 医学
Anatomical Record Pub Date : 2024-10-03 DOI: 10.1002/ar.25579
Kacper Węgrzyn, Olivier S G Pauwels, Jonathan Brecko, Georgios L Georgalis
{"title":"Vertebral morphology and intracolumnar variation of the iconic African viperid snake Atheris (Serpentes, Viperidae).","authors":"Kacper Węgrzyn, Olivier S G Pauwels, Jonathan Brecko, Georgios L Georgalis","doi":"10.1002/ar.25579","DOIUrl":"https://doi.org/10.1002/ar.25579","url":null,"abstract":"<p><p>We here provide a detailed description of the vertebral morphology of the African arboreal viperid snakes of the genus Atheris. Vertebrae of three different species of the genus, i.e., Atheris desaixi, Atheris hispida, and Atheris katangensis, were investigated via the aid of μCT (micro-computed tomography) scanning. We describe several vertebrae from different regions of the vertebral column for all three species, starting from the atlas-axis complex to the caudal tip, in order to demonstrate important differences regarding the intracolumnar variation. Comparison of these three species shows an overall similar general morphology of the trunk vertebrae among the Atheris species. We extensively compare Atheris with other known viperids. As the sole arboreal genus of Viperinae the prehensile nature of the tail of Atheris is reflected in its caudal vertebral morphology, which is characterized by a high number of caudal vertebrae but also robust and anteroventrally oriented pleurapophyses as a skeletal adaptation, linked with the myology of the tail, to an arboreal lifestyle. We anticipate that the extensive figuring of these viperid specimens will also aid identifications in paleontology.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skink systematics inside out: Comparative cranial osteology of the New World Mabuyinae. Skink systematics inside out:新大陆马布伊科的头盖骨比较骨学。
4区 医学
Anatomical Record Pub Date : 2024-09-25 DOI: 10.1002/ar.25572
Julio C Ferreira-Junior, Davor Vrcibradic, Paulo Passos
{"title":"Skink systematics inside out: Comparative cranial osteology of the New World Mabuyinae.","authors":"Julio C Ferreira-Junior, Davor Vrcibradic, Paulo Passos","doi":"10.1002/ar.25572","DOIUrl":"https://doi.org/10.1002/ar.25572","url":null,"abstract":"<p><p>The Mabuyinae subfamily exhibits remarkable diversity, encompassing 26 genera and 236 currently recognized species. Traditionally, the entire range of the group was attributed to the single genus Mabuya, which had a wide distribution along tropical regions of the Planet. In recent studies, phylogenetic hypotheses based on molecular data have identified four major groups, which have been further divided into geographically distinct clades. At least two phylogenetically distinct lineages of Mabuyinae are distributed in the Neotropical Region: Trachylepis atlantica and the remaining 16 genera within the Mabuyinae clade from the mainland and the Caribbean islands. Our understanding of Mabuyinae osteology is still quite limited, particularly concerning interspecific variation. This lack of information hinders our ability to make strong contributions to the phylogenetic relationships within this group or even to confirm the existence of certain new taxa considering their relatively conserved external morphology. This work provides a comprehensive anatomical reference for the adult skull of Neotropical Mabuyinae lizards, highlighting osteological features that might be useful for delimiting each genus. This descriptive guide includes illustrations and employs multiple techniques, such as dry preparation, clearing and staining, and high-resolution computerized microtomography. Our results provide additional diagnostic characteristics that include specific cranial bone arrangements, dental patterns, and cranial adaptations, such as dorsoventral head flattening, and their functional implications for bite force and cranial biomechanics. This study reinforces the importance of cranial morphology in understanding the phylogenetic relationships and evolutionary trajectories of New World Mabuyinae lizards, advocating for broader morphological sampling to enrich our understanding of these diverse reptiles.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioimaging of sense organs and the central nervous system in extant fishes and reptiles in situ: A review. 现生鱼类和爬行动物感觉器官和中枢神经系统的原位生物成像:综述。
4区 医学
Anatomical Record Pub Date : 2024-09-02 DOI: 10.1002/ar.25566
Shaun P Collin, Kara E Yopak, Jenna M Crowe-Riddell, Victoria Camilieri-Asch, Caroline C Kerr, Hope Robins, Myoung Hoon Ha, Annalise Ceddia, Travis L Dutka, Lucille Chapuis
{"title":"Bioimaging of sense organs and the central nervous system in extant fishes and reptiles in situ: A review.","authors":"Shaun P Collin, Kara E Yopak, Jenna M Crowe-Riddell, Victoria Camilieri-Asch, Caroline C Kerr, Hope Robins, Myoung Hoon Ha, Annalise Ceddia, Travis L Dutka, Lucille Chapuis","doi":"10.1002/ar.25566","DOIUrl":"https://doi.org/10.1002/ar.25566","url":null,"abstract":"<p><p>Bioimaging is changing the field of sensory biology, especially for taxa that are lesser-known, rare, and logistically difficult to source. When integrated with traditional neurobiological approaches, developing an archival, digital repository of morphological images can offer the opportunity to improve our understanding of whole neural systems without the issues of surgical intervention and negate the risk of damage and artefactual interpretation. This review focuses on current approaches to bioimaging the peripheral (sense organs) and central (brain) nervous systems in extant fishes (cartilaginous and bony) and non-avian reptiles in situ. Magnetic resonance imaging (MRI), micro-computed tomography (μCT), both super-resolution track density imaging and diffusion tensor-based imaging, and a range of other new technological advances are presented, together with novel approaches in optimizing both contrast and resolution, for developing detailed neuroanatomical atlases and enhancing comparative analyses of museum specimens. For MRI, tissue preparation, including choice of fixative, impacts tissue MR responses, where both resolving power and signal-to-noise ratio improve as field strength increases. Time in fixative, concentration of contrast agent, and duration of immersion in the contrast agent can also significantly affect relaxation times, and thus image quality. For μCT, the use of contrast-enhancing stains (iodine-, non-iodine-, or nanoparticle-based) is critical, where the type of fixative used, and the concentration of stain and duration of staining time often require species-specific optimization. Advanced reconstruction algorithms to reduce noise and artifacts and post-processing techniques, such as deconvolution and filtering, are now being used to improve image quality and resolution.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ontogeny of the malleus in Mesocricetus auratus (Mammalia, Rodentia): Systematic and functional implications for the muroid middle ear. 中耳(哺乳纲,啮齿目)耳廓的本体发育:对啮齿目中耳的系统和功能影响
4区 医学
Anatomical Record Pub Date : 2024-08-28 DOI: 10.1002/ar.25565
Franziska Fritzsche, Wolfgang Maier, Irina Ruf
{"title":"Ontogeny of the malleus in Mesocricetus auratus (Mammalia, Rodentia): Systematic and functional implications for the muroid middle ear.","authors":"Franziska Fritzsche, Wolfgang Maier, Irina Ruf","doi":"10.1002/ar.25565","DOIUrl":"https://doi.org/10.1002/ar.25565","url":null,"abstract":"<p><p>The three mammalian auditory ossicles enhance sound transmission from the tympanic membrane to the inner ear. The anterior anchoring of the malleus is one of the key characters for functional classification of the auditory ossicles. Previous studies revealed a medial outgrowth of the mallear anterior process, the processus internus praearticularis, which serves as an anchor for the auditory ossicle chain but has been often missed due to its delicate nature. Here we describe the development and morphology of the malleus and its processus internus praearticularis in the cricetine rodent Mesocricetus auratus, compared to selected muroid species (Cricetus cricetus, Peromyscus maniculatus, and Mus musculus). Early postnatal stages of Mesocricetus show the formation of the malleus by fusion of the prearticular and mallear main body. The processus internus praearticularis forms an increasing broad lamina fused anteriorly to the ectotympanic in adult stages of all studied species. Peromyscus and Mus show a distinct orbicular apophysis that increases inertia of the malleus and therefore these species represent the microtype of auditory ossicles. In contrast, the center of mass of the malleus in the studied Cricetinae is close to the anatomical axis of rotation and their auditory ossicles represent the transitional type. The microtype belongs to the grundplan of Muroidea and is plesiomorphic for Cricetidae, whereas the transitional type evolved several times within Muroidea and represents an apomorphic feature of Cricetinae.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From beaks to brains-Challenges in translating woodpecker biology into traumatic brain injury innovation. 从鸟嘴到大脑--将啄木鸟生物学转化为脑外伤创新的挑战。
4区 医学
Anatomical Record Pub Date : 2024-08-21 DOI: 10.1002/ar.25567
James M Smoliga
{"title":"From beaks to brains-Challenges in translating woodpecker biology into traumatic brain injury innovation.","authors":"James M Smoliga","doi":"10.1002/ar.25567","DOIUrl":"https://doi.org/10.1002/ar.25567","url":null,"abstract":"<p><p>The biomechanics of woodpeckers have captivated researchers for decades. These birds' unique ability to withstand repeated impacts, seemingly without apparent harm, has piqued the interests of scientists and clinicians across multiple disciplines. Historical and recent studies have dissected the anatomical and physiological underpinnings of woodpeckers' protective mechanisms and sparked interest in the development of woodpecker-inspired safety equipment. Despite the intuitive appeal of translating woodpecker adaptations into strategies for human traumatic brain injury (TBI) prevention, significant challenges hinder such innovation. Critical examinations reveal a lack of direct applicability of these findings to human TBI prevention, attributed to fundamental biological and mechanical dissimilarities between humans and woodpeckers. Additionally, some commercial endeavors attempting to capitalize on our fascination with woodpeckers are rooted in unsubstantiated claims about these birds. This paper explores the narrative surrounding woodpecker biomimicry, including its origins and history, and highlights the challenges of translating findings from unconventional animal models of TBI into effective human medical interventions.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite element analysis of feeding in red and gray squirrels (Sciurus vulgaris and Sciurus carolinensis). 红松鼠和灰松鼠(Sciurus vulgaris 和 Sciurus carolinensis)进食的有限元分析。
4区 医学
Anatomical Record Pub Date : 2024-08-21 DOI: 10.1002/ar.25564
Philip G Cox, Peter J Watson
{"title":"Finite element analysis of feeding in red and gray squirrels (Sciurus vulgaris and Sciurus carolinensis).","authors":"Philip G Cox, Peter J Watson","doi":"10.1002/ar.25564","DOIUrl":"https://doi.org/10.1002/ar.25564","url":null,"abstract":"<p><p>Invasive gray squirrels (Sciurus carolinensis) have replaced the native red squirrel (Sciurus vulgaris) across much of Great Britain over the last century. Several factors have been proposed to underlie this replacement, but here we investigated the potential for dietary competition in which gray squirrels have better feeding performance than reds and are thus able to extract nutrition from food more efficiently. In this scenario, we hypothesized that red squirrels would show higher stress, strain, and deformation across the skull than gray squirrels. To test our hypotheses, we created finite element models of the skull of a red and a gray squirrel and loaded them to simulate biting at the incisor, at two different gapes, and at the molar. The results showed similar distributions of strains and von Mises stresses in the two species, but higher stress and strain magnitudes in the red squirrel, especially during molar biting. Few differences were seen in stress and strain distributions or magnitudes between the two incisor gapes. A geometric morphometric analysis showed greater deformations in the red squirrel skull at all bites and gapes. These results are consistent with our hypothesis and indicate increased biomechanical performance of the skull in gray squirrels, allowing them to access and process food items more efficiently than red squirrels.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional morphology of the pharyngeal teeth of the ocean sunfish, Mola mola. 海洋太阳鱼(Mola mola)咽齿的功能形态。
4区 医学
Anatomical Record Pub Date : 2024-08-19 DOI: 10.1002/ar.25531
Benjamin Flaum, Michael J Blumer, Mason N Dean, Laura J Ekstrom
{"title":"Functional morphology of the pharyngeal teeth of the ocean sunfish, Mola mola.","authors":"Benjamin Flaum, Michael J Blumer, Mason N Dean, Laura J Ekstrom","doi":"10.1002/ar.25531","DOIUrl":"https://doi.org/10.1002/ar.25531","url":null,"abstract":"<p><p>Many fish use a set of pharyngeal jaws in their throat to aid in prey capture and processing, particularly of large or complex prey. In this study-combining dissection, CT scanning, histology, and performance testing-we demonstrate a novel use of pharyngeal teeth in the ocean sunfish (Mola mola), a species for which pharyngeal jaw anatomy had not been described. We show that sunfish possesses only dorsal pharyngeal jaws where, in contrast to their beaklike oral teeth, teeth are recurved spikes, arranged in three loosely connected rows. Fang-like pharyngeal teeth were tightly socketed in the skeletal tissue, with shorter, incompletely-formed teeth erupting between, suggesting tooth replacement. Trichrome staining revealed teeth anchored into their sockets via a combination of collagen bundles originating from the jaw connective tissue and mineralized trabeculae extending from the teeth bases. In resting position, teeth are nearly covered by soft tissue; however, manipulation of a straplike muscle, running transversely on the dorsal jaw face, everted teeth like a cat's claws. Adult sunfish suction feed almost exclusively on gelatinous prey (e.g., jellyfish) and have been observed to jet water during feeding and other activities; flume experiments simulating jetting behavior demonstrated adult teeth caught simulated gelatinous prey with 70%-100% success, with the teeth immobile in their sockets, even at 50x the jetting force, demonstrating high safety factor. We propose that sunfish pharyngeal teeth function as an efficient retention cage for mechanically challenging prey, a curious evolutionary convergence with the throat spikes of divergent taxa that employ spitting and jetting.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disparity of turbinal bones in placental mammals. 胎盘哺乳动物甲骨的差异。
4区 医学
Anatomical Record Pub Date : 2024-08-05 DOI: 10.1002/ar.25552
Quentin Martinez, Mark Wright, Benjamin Dubourguier, Kai Ito, Thomas van de Kamp, Elias Hamann, Marcus Zuber, Gabriel Ferreira, Rémi Blanc, Pierre-Henri Fabre, Lionel Hautier, Eli Amson
{"title":"Disparity of turbinal bones in placental mammals.","authors":"Quentin Martinez, Mark Wright, Benjamin Dubourguier, Kai Ito, Thomas van de Kamp, Elias Hamann, Marcus Zuber, Gabriel Ferreira, Rémi Blanc, Pierre-Henri Fabre, Lionel Hautier, Eli Amson","doi":"10.1002/ar.25552","DOIUrl":"https://doi.org/10.1002/ar.25552","url":null,"abstract":"<p><p>Turbinals are key bony elements of the mammalian nasal cavity, involved in heat and moisture conservation as well as olfaction. While turbinals are well known in some groups, their diversity is poorly understood at the scale of placental mammals, which span 21 orders. Here, we investigated the turbinal bones and associated lamellae for one representative of each extant order of placental mammals. We segmented and isolated each independent turbinal and lamella and found an important diversity of variation in the number of turbinals, as well as their size, and shape. We found that the turbinal count varies widely, from zero in the La Plata dolphin, (Pontoporia blainvillei) to about 110 in the African bush elephant (Loxodonta africana). Multiple turbinal losses and additional gains took place along the phylogeny of placental mammals. Some changes are clearly attributed to ecological adaptation, while others are probably related to phylogenetic inertia. In addition, this work highlights the problem of turbinal nomenclature in some placental orders with numerous and highly complex turbinals, for which homologies are extremely difficult to resolve. Therefore, this work underscores the importance of developmental studies to better clarify turbinal homology and nomenclature and provides a standardized comparative framework for further research.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
African wild dog (Lycaon pictus) masticatory apparatus and oral cavity morphology. 非洲野狗(Lycaon pictus)的咀嚼器和口腔形态。
4区 医学
Anatomical Record Pub Date : 2024-08-03 DOI: 10.1002/ar.25547
Heather F Smith, Felicia A Rocco, Mia A Felix, Dominik Valdez, Leigha M Lynch
{"title":"African wild dog (Lycaon pictus) masticatory apparatus and oral cavity morphology.","authors":"Heather F Smith, Felicia A Rocco, Mia A Felix, Dominik Valdez, Leigha M Lynch","doi":"10.1002/ar.25547","DOIUrl":"https://doi.org/10.1002/ar.25547","url":null,"abstract":"<p><p>African wild dogs (Lycaon pictus) are unique among canids in their specialized hunting strategies and social organization. Unlike other, more omnivorous canids, L. pictus is a hypercarnivore that consumes almost exclusively meat, particularly prey larger than its body size, which it hunts through cooperative, exhaustive predation tactics. Its bite force is also among the highest reported for carnivorans. Here, we dissected an adult male L. pictus specimen and conducted diffusion iodine contrast-enhanced computed tomography (diceCT) scans to evaluate and describe its masticatory and oral cavity musculature. Muscles of mastication in L. pictus are separated by deep layers of thick intermuscular fascia and deep insertions. The superficial surface of m. masseter is entirely covered by an extremely thick masseteric fascia. Deep to m. masseter pars reflexa and superficialis are additional bellies, m. masseter pars profunda and zygomaticomandibularis. Musculus temporalis in L. pictus, divides into suprazygomatic, superficial, and deep bellies separated by a deep layer of thick intermuscular fascia, and it inserts along the entire rostral margin of the mandibular ramus. Musculus digastricus appears to comprise a single, large fusiform belly which appears to receive its innervation exclusively from CN V3 (nervus mandibularis, division of nervus trigeminus). Musculus pterygoideus medialis and lateralis are each composed of a single, deep belly. However, despite its great bite force, the jaw adductor muscle mass in L. pictus is not increased for its body size over other canid taxa. This finding suggests there are other architectural adaptations to hypercarnivory beyond increased muscle volume (e.g., pennation angle, greater strength, optimization of lever arms for mechanical advantage).</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141890852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myological and osteological approaches to gape and bite force reconstruction in Smilodon fatalis. 用肌肉学和骨学方法重建Smilodon fatalis的咬合和咬合力。
4区 医学
Anatomical Record Pub Date : 2024-06-28 DOI: 10.1002/ar.25529
Ashley R Deutsch, Arin Berger, Lara L Martens, Benjamin R Witt, Rachel L J Smith, Adam Hartstone-Rose
{"title":"Myological and osteological approaches to gape and bite force reconstruction in Smilodon fatalis.","authors":"Ashley R Deutsch, Arin Berger, Lara L Martens, Benjamin R Witt, Rachel L J Smith, Adam Hartstone-Rose","doi":"10.1002/ar.25529","DOIUrl":"https://doi.org/10.1002/ar.25529","url":null,"abstract":"<p><p>Masticatory gape and bite force are important behavioral and ecological variables. While much has been written about the highly derived masticatory anatomy of Smilodon fatalis, there remains a great deal of debate about their masticatory behaviors. To that end, we establish osteological proxies for masticatory adductor fascicle length (FL) based on extant felids and apply these along with previously validated techniques to S. fatalis to provide estimates of fascicle lengths, maximum osteological gapes, and bite force. While the best correlated FL proxies in extant felids do not predict particularly long fascicles, these proxies may be of value for less morphologically distinct felids. A slightly less well correlated proxy predicts a temporalis FL 15% longer than that of Panthera tigris. While angular maximum bony gape is significantly larger in S. fatalis than it is in extant felids, linear gape at the canine tip and carnassial notch were not significantly different from those of extant felids. Finally, we produce anatomical bite force estimates of 1283.74 N at the canine and 4671.41 N at the carnassial, which are similar in magnitude to estimates not of the largest felids but of the much smaller P. onca, with S. fatalis producing slightly less force at the canines and more at the carnassials. These estimates align with previous predictions that S. fatalis may have killed large prey with canine shearing bites produced, in part, by force contributions of the postcranial muscles.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信