现生鱼类和爬行动物感觉器官和中枢神经系统的原位生物成像:综述。

4区 医学 Q2 Agricultural and Biological Sciences
Anatomical Record Pub Date : 2024-09-02 DOI:10.1002/ar.25566
Shaun P Collin, Kara E Yopak, Jenna M Crowe-Riddell, Victoria Camilieri-Asch, Caroline C Kerr, Hope Robins, Myoung Hoon Ha, Annalise Ceddia, Travis L Dutka, Lucille Chapuis
{"title":"现生鱼类和爬行动物感觉器官和中枢神经系统的原位生物成像:综述。","authors":"Shaun P Collin, Kara E Yopak, Jenna M Crowe-Riddell, Victoria Camilieri-Asch, Caroline C Kerr, Hope Robins, Myoung Hoon Ha, Annalise Ceddia, Travis L Dutka, Lucille Chapuis","doi":"10.1002/ar.25566","DOIUrl":null,"url":null,"abstract":"<p><p>Bioimaging is changing the field of sensory biology, especially for taxa that are lesser-known, rare, and logistically difficult to source. When integrated with traditional neurobiological approaches, developing an archival, digital repository of morphological images can offer the opportunity to improve our understanding of whole neural systems without the issues of surgical intervention and negate the risk of damage and artefactual interpretation. This review focuses on current approaches to bioimaging the peripheral (sense organs) and central (brain) nervous systems in extant fishes (cartilaginous and bony) and non-avian reptiles in situ. Magnetic resonance imaging (MRI), micro-computed tomography (μCT), both super-resolution track density imaging and diffusion tensor-based imaging, and a range of other new technological advances are presented, together with novel approaches in optimizing both contrast and resolution, for developing detailed neuroanatomical atlases and enhancing comparative analyses of museum specimens. For MRI, tissue preparation, including choice of fixative, impacts tissue MR responses, where both resolving power and signal-to-noise ratio improve as field strength increases. Time in fixative, concentration of contrast agent, and duration of immersion in the contrast agent can also significantly affect relaxation times, and thus image quality. For μCT, the use of contrast-enhancing stains (iodine-, non-iodine-, or nanoparticle-based) is critical, where the type of fixative used, and the concentration of stain and duration of staining time often require species-specific optimization. Advanced reconstruction algorithms to reduce noise and artifacts and post-processing techniques, such as deconvolution and filtering, are now being used to improve image quality and resolution.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioimaging of sense organs and the central nervous system in extant fishes and reptiles in situ: A review.\",\"authors\":\"Shaun P Collin, Kara E Yopak, Jenna M Crowe-Riddell, Victoria Camilieri-Asch, Caroline C Kerr, Hope Robins, Myoung Hoon Ha, Annalise Ceddia, Travis L Dutka, Lucille Chapuis\",\"doi\":\"10.1002/ar.25566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioimaging is changing the field of sensory biology, especially for taxa that are lesser-known, rare, and logistically difficult to source. When integrated with traditional neurobiological approaches, developing an archival, digital repository of morphological images can offer the opportunity to improve our understanding of whole neural systems without the issues of surgical intervention and negate the risk of damage and artefactual interpretation. This review focuses on current approaches to bioimaging the peripheral (sense organs) and central (brain) nervous systems in extant fishes (cartilaginous and bony) and non-avian reptiles in situ. Magnetic resonance imaging (MRI), micro-computed tomography (μCT), both super-resolution track density imaging and diffusion tensor-based imaging, and a range of other new technological advances are presented, together with novel approaches in optimizing both contrast and resolution, for developing detailed neuroanatomical atlases and enhancing comparative analyses of museum specimens. For MRI, tissue preparation, including choice of fixative, impacts tissue MR responses, where both resolving power and signal-to-noise ratio improve as field strength increases. Time in fixative, concentration of contrast agent, and duration of immersion in the contrast agent can also significantly affect relaxation times, and thus image quality. For μCT, the use of contrast-enhancing stains (iodine-, non-iodine-, or nanoparticle-based) is critical, where the type of fixative used, and the concentration of stain and duration of staining time often require species-specific optimization. Advanced reconstruction algorithms to reduce noise and artifacts and post-processing techniques, such as deconvolution and filtering, are now being used to improve image quality and resolution.</p>\",\"PeriodicalId\":50793,\"journal\":{\"name\":\"Anatomical Record\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anatomical Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ar.25566\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ar.25566","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

生物成像技术正在改变感官生物学领域,尤其是那些鲜为人知、稀有且在后勤上难以获得资料的类群。当与传统的神经生物学方法相结合时,建立一个形态学图像的数字化档案库将有机会提高我们对整个神经系统的认识,而无需外科手术干预,并消除了损伤和人工解读的风险。本综述将重点介绍目前对现生鱼类(软骨鱼类和硬骨鱼类)和非鸟类爬行动物的外周(感觉器官)和中枢(大脑)神经系统进行原位生物成像的方法。报告介绍了磁共振成像(MRI)、微型计算机断层扫描(μCT)、超分辨率轨迹密度成像和基于扩散张量的成像等一系列新技术进展,以及优化对比度和分辨率的新方法,用于开发详细的神经解剖图谱和加强博物馆标本的比较分析。对于核磁共振成像,组织制备(包括固定剂的选择)会影响组织的核磁共振反应,随着磁场强度的增加,分辨率和信噪比都会提高。在固定液中的时间、造影剂的浓度以及在造影剂中的浸泡时间也会对弛豫时间产生重大影响,从而影响图像质量。对于μCT而言,使用造影剂增强染色(碘、非碘或纳米粒子)至关重要,其中使用的固定液类型、染色剂浓度和染色时间的长短往往需要针对具体物种进行优化。先进的重建算法可减少噪音和伪影,后处理技术(如解卷积和滤波)可提高图像质量和分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioimaging of sense organs and the central nervous system in extant fishes and reptiles in situ: A review.

Bioimaging is changing the field of sensory biology, especially for taxa that are lesser-known, rare, and logistically difficult to source. When integrated with traditional neurobiological approaches, developing an archival, digital repository of morphological images can offer the opportunity to improve our understanding of whole neural systems without the issues of surgical intervention and negate the risk of damage and artefactual interpretation. This review focuses on current approaches to bioimaging the peripheral (sense organs) and central (brain) nervous systems in extant fishes (cartilaginous and bony) and non-avian reptiles in situ. Magnetic resonance imaging (MRI), micro-computed tomography (μCT), both super-resolution track density imaging and diffusion tensor-based imaging, and a range of other new technological advances are presented, together with novel approaches in optimizing both contrast and resolution, for developing detailed neuroanatomical atlases and enhancing comparative analyses of museum specimens. For MRI, tissue preparation, including choice of fixative, impacts tissue MR responses, where both resolving power and signal-to-noise ratio improve as field strength increases. Time in fixative, concentration of contrast agent, and duration of immersion in the contrast agent can also significantly affect relaxation times, and thus image quality. For μCT, the use of contrast-enhancing stains (iodine-, non-iodine-, or nanoparticle-based) is critical, where the type of fixative used, and the concentration of stain and duration of staining time often require species-specific optimization. Advanced reconstruction algorithms to reduce noise and artifacts and post-processing techniques, such as deconvolution and filtering, are now being used to improve image quality and resolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anatomical Record
Anatomical Record Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
4.30
自引率
0.00%
发文量
0
期刊介绍: The Anatomical Record
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信