Anatomical Record最新文献

筛选
英文 中文
Palaeohistology of Macrospondylus bollensis (Crocodylomorpha: Thalattosuchia: Teleosauroidea) from the Posidonienschiefer Formation (Toarcian) of Germany, with insights into life history and ecology. 德国 Posidonienschiefer Formation(托尔克世)Macrospondylus bollensis(Crocodylomorpha: Thalattosuchia: Teleosauroidea)的古生物学,以及对生活史和生态学的见解。
4区 医学
Anatomical Record Pub Date : 2025-02-01 Epub Date: 2024-09-28 DOI: 10.1002/ar.25577
Michela M Johnson, Torsten M Scheyer, Aurore Canoville, Erin E Maxwell
{"title":"Palaeohistology of Macrospondylus bollensis (Crocodylomorpha: Thalattosuchia: Teleosauroidea) from the Posidonienschiefer Formation (Toarcian) of Germany, with insights into life history and ecology.","authors":"Michela M Johnson, Torsten M Scheyer, Aurore Canoville, Erin E Maxwell","doi":"10.1002/ar.25577","DOIUrl":"10.1002/ar.25577","url":null,"abstract":"<p><p>The Posidonienschiefer Formation of southern Germany has yielded an array of incredible fossil vertebrates. One of the best represented clades therein is Teleosauroidea, a successful thalattosuchian crocodylomorph group that dominated the coastlines. The most abundant teleosauroid, Macrospondylus bollensis, is known from a wide range of body sizes, making it an ideal taxon for histological and ontogenetic investigations. Previous studies examining thalattosuchian histology provide a basic understanding of bone microstructure in teleosauroids, but lack the taxonomic, stratigraphic, and ontogenetic control required to understand growth and palaeobiology within a species. Here, we examine the bone microstructure of three femora and one tibia from three different-sized M. bollensis individuals. We also perform bone compactness analyses to evaluate for ontogenetic and ecological variation. Our results suggests that (1) the smallest specimen was a young, skeletally immature individual with well-vascularized-parallel-fibered bone and limited remodeling in the midshaft periosteal cortex; (2) the intermediate specimen was skeletally immature at death, with vascularized parallel-fibered bone tissue interrupted by at least 10 LAGs, but no clear external fundamental system (EFS), and rather extensive inner cortical bone remodeling; and (3) the largest specimen was skeletally mature, with parallel-fibered bone tissue interrupted by numerous LAGs, a well-developed EFS, and extensive remodeling in the deep cortex. Macrospondylus bollensis grew relatively regularly until reaching adult size, and global bone compactness values fall within the range reported for modern crocodylians. The lifestyle inference models used suggest that M. bollensis was well adapted for an aquatic environment but also retained some ability to move on land. Finally, both larger specimens display a peculiar, localized area of disorganized bone tissue interpreted as pathological.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":"342-368"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of the non-semiaquatic adaptations of extinct crocodylomorphs throughout their fossil record. 对已灭绝的鳄形目动物在整个化石记录中的非水生适应性进行回顾。
4区 医学
Anatomical Record Pub Date : 2025-02-01 Epub Date: 2024-11-25 DOI: 10.1002/ar.25586
Yohan Pochat-Cottilloux
{"title":"A review of the non-semiaquatic adaptations of extinct crocodylomorphs throughout their fossil record.","authors":"Yohan Pochat-Cottilloux","doi":"10.1002/ar.25586","DOIUrl":"10.1002/ar.25586","url":null,"abstract":"<p><p>Crocodylomorphs constitute a clade of archosaurs that have thrived since the Mesozoic until today and have survived numerous major biological crises. Contrary to historic belief, their semiaquatic extant representatives (crocodylians) are not living fossils, and, during their evolutionary history, crocodylomorphs have evolved to live in a variety of environments. This review aims to summarize the non-semiaquatic adaptations (i.e., either terrestrial or fully aquatic) of different groups from different periods, highlighting how exactly those different lifestyles are inferred for those animals, with regard to their geographic and temporal distribution and phylogenetic relationships. The ancestral condition for Crocodylomorpha seems to have been a terrestrial lifestyle, linked with several morphological adaptations such as an altirostral skull, long limbs allowing a fully erect posture and a specialized dentition for diets based on land. However, some members of this clade, such as thalattosuchians and dyrosaurids display adaptations for an opposite, aquatic lifestyle, interestingly inferred from the same type of morphological observations. Finally, new techniques for inferring the paleobiology of those extinct animals have been put forward in the last decade, appearing as a complementary approach to traditional morphological descriptions and comparisons. Such is the case of paleoneuroanatomical (CT scan data), histological, and geochemical studies.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":"266-314"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional and phylogenetic signals in the pectoral girdle of Thalattosuchia and Dyrosauridae (Crocodylomorpha). 巨齿龙科(Thalattosuchia)和鳄龙科(Dyrosauridae)胸腰的功能和系统发育信号。
4区 医学
Anatomical Record Pub Date : 2025-02-01 Epub Date: 2024-11-25 DOI: 10.1002/ar.25596
Isaure Scavezzoni, Michela M Johnson, Stéphane Jouve, Valentin Fischer
{"title":"Functional and phylogenetic signals in the pectoral girdle of Thalattosuchia and Dyrosauridae (Crocodylomorpha).","authors":"Isaure Scavezzoni, Michela M Johnson, Stéphane Jouve, Valentin Fischer","doi":"10.1002/ar.25596","DOIUrl":"10.1002/ar.25596","url":null,"abstract":"<p><p>Crocodylomorphs have colonized various environments from fully terrestrial to fully aquatic, making it an important clade among archosaurs. A remarkable example of the rich past diversity of Crocodylomorpha Hay, 1930 is the marine colonization undergone by several crocodylomorph lineages, particularly Thalattosuchia Fraas, 1901 during the Early Jurassic-Early Cretaceous, and Dyrosauridae de Stefano, 1903 during the Late Cretaceous-Early Eocene. Thalattosuchia represents the most impressive and singular marine radiation among Crocodylomorpha, occupying various ecological niches, before enigmatically disappearing in the Cretaceous. Dyrosauridae, on the other hand, is known for surviving the end-Cretaceous mass extinction in abundance but subsequently vanished. The evolutionary path undertaken by crocodylomorphs into the aquatic environments and the reasons for their disappearance outside marine extinction events during the Mesozoic remains a mystery. Despite a well-preserved fossil record, attention has primarily centered on craniodental adaptations, overlooking the swimming-related adaptations recorded in the postcranial skeleton. This research primarily involves a comprehensive examination of the pectoral girdle of the most representative members of Thalattosuchia and Dyrosauridae, highlighting their evolutionary trajectories over time. Additionally, this work aims to test the phylogenetic signal residing in the postcranial anatomy of Crocodylomorpha. As such, the most recent and complete Crocodylomorpha phylogenetic dataset has been repurposed: 42 new postcranial characters have been added and several others have been revised to address our phylogenetic question. We stress that postcranial anatomy constitutes an important tool supply to better understand the relations of extinct crocodyliforms, but also offers insights on their development, ecology, and biomechanics.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":"412-573"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new Peirosauridae (Crocodyliformes, Notosuchia) from the Adamantina Formation (Bauru Group, Late Cretaceous), with a revised phylogenetic analysis of Sebecia. 来自阿达曼蒂纳地层(包鲁组,晚白垩世)的一种新的鳄龙科(鳄形目,Notosuchia),并对Sebecia进行了修订的系统发育分析。
4区 医学
Anatomical Record Pub Date : 2025-02-01 Epub Date: 2024-08-29 DOI: 10.1002/ar.25559
Juan V Ruiz, Marcos V L Queiroz, Kawan C Martins, Pedro L Godoy, Fabiano V Iori, Max C Langer, Felipe C Montefeltro, Mario Bronzati
{"title":"A new Peirosauridae (Crocodyliformes, Notosuchia) from the Adamantina Formation (Bauru Group, Late Cretaceous), with a revised phylogenetic analysis of Sebecia.","authors":"Juan V Ruiz, Marcos V L Queiroz, Kawan C Martins, Pedro L Godoy, Fabiano V Iori, Max C Langer, Felipe C Montefeltro, Mario Bronzati","doi":"10.1002/ar.25559","DOIUrl":"10.1002/ar.25559","url":null,"abstract":"<p><p>Peirosauridae (Crocodyliformes, Notosuchia) is one of the fossil lineages of crocodyliforms ubiquitous in the Cretaceous deposits of the Bauru Basin. Here, we describe a new species of a longirostrine Peirosauridae from the Adamantina Formation (Bauru Basin, Late Cretaceous). The specimen consists of a partially preserved skull with a cranial roof, interorbital region, and fragments of the posterior portion of the rostrum, including the prefrontal and lacrimal; left hemimandible, with 14 alveoli and 12 teeth; and a single cervical rib fragment. The specimen is associated with Peirosauridae by three cranial synapomorphies, and it can be assigned to a new genus and species by presenting seven cranial and one tooth apomorphies. To clarify the position of the new taxon, an updated phylogenetic analysis was performed with increased sampling of taxa of Notosuchia, especially Peirosauridae, and phylogenetically relevant characters. Our results indicated the monophyly of Peirosauridae, formed by two main lineages, the oreinirostral and presumably terrestrial Peirosaurinae and the longirostrine and presumably semi-aquatic Pepesuchinae. The recovering of both lineages as distinct entities was also reinforced through a morphospace analysis. Pepesuchinae were notable by exploring a position of the morphospace not explored by any other Notosuchia. Their longer rostra and the assumption of them being gradually specialized to aquatic habits reflects the unique diversity of these crocodyliforms through the Cretaceous deposits of South America and Africa.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":"574-597"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The first ontogenetic model for non-crocodylomorph loricatans, based on osteohistology of the ontogenetic series of Prestosuchus chiniquensis from the Middle Triassic of Brazil. 基于巴西中三叠世 Prestosuchus chiniquensis 本体系列的骨组织学,首次建立了非鳄形鼻蜥类的本体模型。
4区 医学
Anatomical Record Pub Date : 2025-02-01 Epub Date: 2024-11-20 DOI: 10.1002/ar.25598
Brodsky Dantas Macedo de Farias, Thiago Carlisbino, Bianca Martins Mastrantonio, Julia Brenda Desojo, Cesar Leandro Schultz, Marina Bento Soares
{"title":"The first ontogenetic model for non-crocodylomorph loricatans, based on osteohistology of the ontogenetic series of Prestosuchus chiniquensis from the Middle Triassic of Brazil.","authors":"Brodsky Dantas Macedo de Farias, Thiago Carlisbino, Bianca Martins Mastrantonio, Julia Brenda Desojo, Cesar Leandro Schultz, Marina Bento Soares","doi":"10.1002/ar.25598","DOIUrl":"10.1002/ar.25598","url":null,"abstract":"<p><p>Prestosuchus chiniquensis is an iconic non-crocodylomorph loricatan from the Brazilian Triassic beds and the best-known taxon, represented by several specimens. The completeness and preservation of its skeleton make it a valuable taxon for paleobiological studies. We explore the microstructure of bone tissues of appendicular elements and ribs of three specimens of Prestosuchus to access a variety of aspects of its paleobiology, such as histovariability, ontogeny, and growth patterns. Integrating our data and other osteohistologically studied P. chiniquensis specimens, we proposed for the first time an ontogenetic model for non-crocodylomorph loricatans. The model encompasses six distinct age classes (I-VI) that allow us to infer the growth patterns of P. chiniquensis and possibly expand to other phylogenetically close taxa. During early ontogeny (age classes I-II), sustained fast growth was maintained by a fibrolamellar complex. In mid ontogeny (age classes III-IV), highly vascularized parallel-fibered bone predominates, suggesting intermediary growth rates. A change for a poorly vascularized parallel-fibered/lamellar bone would mark the attainment of sexual (age classes IV-V) and skeletal maturity, comprising the age class VI. An external fundamental system (EFS) present in the outermost cortex is the main histological feature that characterize the age class VI. Major histovariability features are present between appendicular bones and ribs of skeletally immature individuals. The most prominent of them is the presence of fibrolamellar complex and highly vascularized parallel-fibered bone in appendicular bones and poorly vascularized parallel-fibered bone in ribs. In advanced ontogenetic stages, the histovariability between appendicular bones and ribs tends to be minor. Our data also support previous hypothesis of the presence of one new taxon among the specimens assigned to P. chiniquensis, increasing the diversity of non-crocodylomorph loricatans. The new taxon, represented by the specimen UFRGS-PV-0152-T, awaits a formal anatomical description. Our study advances the preliminary understand of the ontogeny and growth patterns of non-crocodylomorphs loricatans and Pseudosuchia as a whole.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":"598-628"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endocranial anatomy and phylogenetic position of the crocodylian Eosuchus lerichei from the late Paleocene of northwestern Europe and potential adaptations for transoceanic dispersal in gavialoids. 欧洲西北部古新世晚期鳄鱼Eosuchus lerichei的颅内解剖学和系统发育位置,以及鳄鱼类跨洋扩散的潜在适应性。
4区 医学
Anatomical Record Pub Date : 2025-02-01 Epub Date: 2024-09-03 DOI: 10.1002/ar.25569
Paul M J Burke, Sophie A Boerman, Gwendal Perrichon, Jeremy E Martin, Thierry Smith, Johan Vellekoop, Philip D Mannion
{"title":"Endocranial anatomy and phylogenetic position of the crocodylian Eosuchus lerichei from the late Paleocene of northwestern Europe and potential adaptations for transoceanic dispersal in gavialoids.","authors":"Paul M J Burke, Sophie A Boerman, Gwendal Perrichon, Jeremy E Martin, Thierry Smith, Johan Vellekoop, Philip D Mannion","doi":"10.1002/ar.25569","DOIUrl":"10.1002/ar.25569","url":null,"abstract":"<p><p>Eosuchus lerichei is a gavialoid crocodylian from late Paleocene marine deposits of northwestern Europe, known from a skull and lower jaws, as well as postcrania. Its sister taxon relationship with the approximately contemporaneous species Eosuchus minor from the east coast of the USA has been explained through transoceanic dispersal, indicating a capability for salt excretion that is absent in extant gavialoids. However, there is currently no anatomical evidence to support marine adaptation in extinct gavialoids. Furthermore, the placement of Eosuchus within Gavialoidea is labile, with some analyses supporting affinities with the Late Cretaceous to early Paleogene \"thoracosaurs.\" Here we present novel data on the internal and external anatomy of the skull of E. lerichei that enables a revised diagnosis, with 6 autapormorphies identified for the genus and 10 features that enable differentiation of the species from Eosuchus minor. Our phylogenetic analyses recover Eosuchus as an early diverging gavialid gavialoid that is not part of the \"thoracosaur\" group. In addition to thickened semi-circular canal walls of the endosseous labyrinth and paratympanic sinus reduction, we identify potential osteological correlates for salt glands in the internal surface of the prefrontal and lacrimal bones of E. lerichei. These salt glands potentially provide anatomical evidence for the capability of transoceanic dispersal within Eosuchus, and we also identify them in the Late Cretaceous \"thoracosaur\" Portugalosuchus. Given that the earliest diverging and stratigraphically oldest gavialoids either have evidence for a nasal salt gland and/or have been recovered from marine deposits, this suggests the capacity for salt excretion might be ancestral for Gavialoidea. Mapping osteological and geological evidence for marine adaptation onto a phylogeny indicates that there was probably more than one independent loss/reduction in the capacity for salt excretion in gavialoids.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":"636-670"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomechanical modeling of musculoskeletal function related to the terrestrial locomotion of Riojasuchus tenuisceps (Archosauria: Ornithosuchidae). Riojasuchus tenuisceps(古龙类:Ornithosuchidae)陆地运动相关肌肉骨骼功能的生物力学模型。
4区 医学
Anatomical Record Pub Date : 2025-02-01 Epub Date: 2024-06-29 DOI: 10.1002/ar.25528
M Belen von Baczko, Juned Zariwala, Sarah Elizabeth Ballentine, Julia B Desojo, John R Hutchinson
{"title":"Biomechanical modeling of musculoskeletal function related to the terrestrial locomotion of Riojasuchus tenuisceps (Archosauria: Ornithosuchidae).","authors":"M Belen von Baczko, Juned Zariwala, Sarah Elizabeth Ballentine, Julia B Desojo, John R Hutchinson","doi":"10.1002/ar.25528","DOIUrl":"10.1002/ar.25528","url":null,"abstract":"<p><p>Riojasuchus tenuisceps was a pseudosuchian archosaur from the Late Triassic period in Argentina. Like other ornithosuchids, it had unusual morphology such as a unique \"crocodile-reversed\" ankle joint, a lesser trochanter as in dinosaurs and a few other archosaurs, robust vertebrae, and somewhat shortened, gracile forelimbs. Such traits have fuelled controversies about its locomotor function-were its limbs erect or \"semi-erect\"? Was it quadrupedal or bipedal, or a mixture thereof? These controversies seem to persist because analyses have been qualitative (functional morphology) or correlative (morphometrics) rather than explicitly, quantitatively testing mechanistic hypotheses about locomotor function. Here, we develop a 3D whole-body model of R. tenuisceps with the musculoskeletal apparatus of the hindlimbs represented in detail using a new muscle reconstruction. We use this model to quantify the body dimensions and hindlimb muscle leverages of this enigmatic taxon, and to estimate joint ranges of motion and qualitative joint functions. Our model supports prior arguments that R. tenuisceps used an erect posture, parasagittal gait and plantigrade pes. However, some of our inferences illuminate the rather contradictory nature of evidence from the musculoskeletal system of R. tenuisceps-different features support (or are ambiguous regarding) quadrupedalism or bipedalism. Deeper analyses of our biomechanical model could move toward a consensus regarding ornithosuchid locomotion. Answering these questions would not only help understand the palaeobiology and bizarre morphology of this clade, but also more broadly if (or how) locomotor abilities played a role in the survival versus extinction of various archosaur lineages during the end-Triassic mass extinction event.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":"369-393"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudosuchia: Masters of survival and diversification. 伪蜥类:生存和多样化的大师。
4区 医学
Anatomical Record Pub Date : 2025-02-01 Epub Date: 2024-12-13 DOI: 10.1002/ar.25611
Mariana Valeria de Araujo Sena, Holly Noelle Woodward, Jorge Cubo
{"title":"Pseudosuchia: Masters of survival and diversification.","authors":"Mariana Valeria de Araujo Sena, Holly Noelle Woodward, Jorge Cubo","doi":"10.1002/ar.25611","DOIUrl":"10.1002/ar.25611","url":null,"abstract":"<p><p>In the context of an increasing interest for Pseudosuchia, we have compiled a Special Issue, comprising 14 collaborative studies that deepen our understanding of pseudosuchian evolution. These contributions range from the description of a new taxon to exhaustive reviews of thermometabolism, morphological adaptation, systematics, and detailed investigations into ontogeny, paleoneurology, paleohistology, and paleobiology. Through these papers, we explore the evolutionary history of pseudosuchian archosaurs, spotlighting their rise and diversification following the end-Permian mass extinction.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":"238-244"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anatomy and ontogeny of the "carnivorous aetosaur": New information on Coahomasuchus kahleorum (Archosauria: Pseudosuchia) from the Upper Triassic Dockum Group of Texas. 食肉甲龙 "的解剖学和个体发育:德克萨斯州三叠纪上统 Dockum 组 Coahomasuchus kahleorum(古龙类:伪龙)的新信息。
4区 医学
Anatomical Record Pub Date : 2025-02-01 Epub Date: 2024-11-18 DOI: 10.1002/ar.25600
William G Parker, Michelle R Stocker, William A Reyes, Sarah Werning
{"title":"Anatomy and ontogeny of the \"carnivorous aetosaur\": New information on Coahomasuchus kahleorum (Archosauria: Pseudosuchia) from the Upper Triassic Dockum Group of Texas.","authors":"William G Parker, Michelle R Stocker, William A Reyes, Sarah Werning","doi":"10.1002/ar.25600","DOIUrl":"10.1002/ar.25600","url":null,"abstract":"<p><p>A newly referred specimen of Coahomasuchus kahleorum (TMM 31100-437) from the lower part of the Upper Triassic Dockum Group of Texas preserves much of the skeleton including the majority of the skull. Introduced in the literature in the 1980s as the \"carnivorous aetosaur\", TMM 31100-437 bears recurved teeth that previously were considered unique among aetosaurs. The small size of the individual led to speculation that it represents a skeletally immature individual that retains a plesiomorphic dentition for Archosauromorpha. We provide a detailed evaluation of the anatomy and phylogenetic relationships of this specimen. Apomorphies of the osteoderms and braincase support the referral of the specimen to C. kahleorum. Histological analysis of the femur demonstrates that TMM 31100-437 does not represent a juvenile form of another known aetosaur. Thus, TMM 31000-437 provides another case demonstrating that aetosaur species spanned a wide range of maximum body sizes, from approximately 1.5 m to over 5 m in length. Reanalysis of the type specimen of C. kahleorum, along with information from TMM 31000-437, demonstrates that the lateral osteoderms are not autapomorphic as previously described and have distinct lateral and medial flanges as well as a dorsal eminence. Overall, this specimen provides key details regarding body size and diet in an early occurring aetosaur.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":"671-735"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142649702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small fish, large variation: Morphological diversity of Weberian apparatus in Noturus catfishes and ecological implications. 小鱼,大变异:诺图尔鲶鱼韦伯器的形态多样性及其生态学意义。
4区 医学
Anatomical Record Pub Date : 2025-01-20 DOI: 10.1002/ar.25629
J C Hoeflich, Juan Liu
{"title":"Small fish, large variation: Morphological diversity of Weberian apparatus in Noturus catfishes and ecological implications.","authors":"J C Hoeflich, Juan Liu","doi":"10.1002/ar.25629","DOIUrl":"https://doi.org/10.1002/ar.25629","url":null,"abstract":"<p><p>The Weberian apparatus is a hearing specialization unique to the otophysan fishes, and an unexpected degree of morphological variation exists in species of the Noturus catfishes. Our aim in this study is to investigate relationships between morphological variations and ecology that may drive this variation. Sampling 48 specimens representing 25 species, we investigated morphological diversity and accounted for ecological variables using landmark-based 3D geometric morphometrics and x-ray-based computed tomography (CT) images. We tested five ecological variables using three landmark sets in three focused regions: the tripus, scaphium, and overall shape of the peripheral structures including the complex vertebra. We performed phylogenetic signal tests, and phylogenetic influence is not significant within Noturus in any of the three regions. Among the tested ecological variables, stream velocity and coloration (a proxy for substrate) were found to be significantly associated with the morphology of the tripus and scaphium, the first and the last ossicles of the sound transmitting chain. This eco-morphology connection may be mediated through stream velocity's dominant role in defining the soundscape of aquatic environments and substrate material properties contributing to which sounds are produced and propagated. We conclude that Noturus catfishes could be acoustically adapted to their microhabitats.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信