Annales Academiae Scientiarum Fennicae-Mathematica最新文献

筛选
英文 中文
Regularization for Lozanovskii's type factorization with applications Lozanovskii型分解的正则化及其应用
IF 0.9 4区 数学
Annales Academiae Scientiarum Fennicae-Mathematica Pub Date : 2020-06-01 DOI: 10.5186/aasfm.2020.4545
Karol Leśnik, L. Maligranda, P. Mleczko
{"title":"Regularization for Lozanovskii's type factorization with applications","authors":"Karol Leśnik, L. Maligranda, P. Mleczko","doi":"10.5186/aasfm.2020.4545","DOIUrl":"https://doi.org/10.5186/aasfm.2020.4545","url":null,"abstract":"We say that a function space Z is factorable by X when there exists a third function space Y such that each f from Z admits factorization f = gh, where g, h belong to X, Y, respectively, and parall ...","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72457848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Hankel bilinear forms on generalized Fock–Sobolev spaces on C^n C^n上广义Fock-Sobolev空间上的Hankel双线性形式
IF 0.9 4区 数学
Annales Academiae Scientiarum Fennicae-Mathematica Pub Date : 2020-06-01 DOI: 10.5186/aasfm.2020.4546
C. Cascante, J. Fàbrega, D. Pascuas
{"title":"Hankel bilinear forms on generalized Fock–Sobolev spaces on C^n","authors":"C. Cascante, J. Fàbrega, D. Pascuas","doi":"10.5186/aasfm.2020.4546","DOIUrl":"https://doi.org/10.5186/aasfm.2020.4546","url":null,"abstract":"We characterize the boundedness of Hankel bilinear forms on a product of generalized Fock–Sobolev spaces on C with respect to the weight (1 + |z|)e α 2 |z| , for l ≥ 1, α > 0 and ρ ∈ R. We obtain a weak decomposition of the Bergman kernel with estimates and a Littlewood– Paley formula, which are key ingredients in the proof of our main results. As an application, we characterize the boundedness, compactness and the membership in the Schatten class of small Hankel operators on these spaces.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82555292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Totally geodesic homeomorphisms between Teichmüller spaces teichmller空间之间的全测地线同胚
IF 0.9 4区 数学
Annales Academiae Scientiarum Fennicae-Mathematica Pub Date : 2020-06-01 DOI: 10.5186/aasfm.2020.4538
D. Tan
{"title":"Totally geodesic homeomorphisms between Teichmüller spaces","authors":"D. Tan","doi":"10.5186/aasfm.2020.4538","DOIUrl":"https://doi.org/10.5186/aasfm.2020.4538","url":null,"abstract":"First, we show that a projective measured foliation is a Busemann point, in Gardiner–Masur boundary, if and only if it is indecomposable. Let f : Tg,n → Tg,n be a totally geodesic homeomorphism and suppose that f admits a homeomorphic extension to ∂GMTg,n. We show that f induces a simplicial automorphism of curve complex. Moreover, the restriction of f on Tg,n is an isometry. As an application, we obtain an alternative proof of Royden’s Theorem.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87803293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Dirichlet forms and convergence of Besov norms on self-similar sets 自相似集合上Besov范数的Dirichlet形式和收敛性
IF 0.9 4区 数学
Annales Academiae Scientiarum Fennicae-Mathematica Pub Date : 2020-06-01 DOI: 10.5186/aasfm.2020.4536
Qingsong Gu, K. Lau
{"title":"Dirichlet forms and convergence of Besov norms on self-similar sets","authors":"Qingsong Gu, K. Lau","doi":"10.5186/aasfm.2020.4536","DOIUrl":"https://doi.org/10.5186/aasfm.2020.4536","url":null,"abstract":". Let B σ 2 , ∞ , B σ 2 , 2 denote the Besov spaces defined on a compact set K ⊂ R d that is equipped with an α -regular measure µ ( K is called an α -set). The critical exponent σ ∗ is the supremum of the σ such that B σ 2 , 2 ∩ C ( K ) is dense in C ( K ) . It is known that B σ 2 , 2 is the domain of a non-local regular Dirichlet form, and for certain standard self-similar set, B σ ∗ 2 , ∞ is the domain of a local regular Dirichlet form. In this paper, we study, on the homogenous p.c.f. self-similar sets (which are α -sets), the convergence of the B σ 2 , 2 -norm to the B σ ∗ 2 , ∞ -norm as σ (cid:37) σ ∗ and the associated Dirichlet forms. The theorem extends a celebrate result of Bourgain, Brezis and Mironescu [4] on Euclidean domains, and the more recent results on some self-similar sets [10, 22, 29].","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79498133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Weak estimates for the maximal and Riesz potential operators on non-homogeneous central Morrey type spaces in L^1 over metric measure spaces 测度空间上L^1非齐次中心Morrey型空间上极大算子和Riesz势算子的弱估计
IF 0.9 4区 数学
Annales Academiae Scientiarum Fennicae-Mathematica Pub Date : 2020-06-01 DOI: 10.5186/aasfm.2020.4561
Katsuo Matsuoka, Y. Mizuta, T. Shimomura
{"title":"Weak estimates for the maximal and Riesz potential operators on non-homogeneous central Morrey type spaces in L^1 over metric measure spaces","authors":"Katsuo Matsuoka, Y. Mizuta, T. Shimomura","doi":"10.5186/aasfm.2020.4561","DOIUrl":"https://doi.org/10.5186/aasfm.2020.4561","url":null,"abstract":"","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78381513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Closure of Bergman and Dirichlet spaces in the Bloch norm Bloch范数中Bergman和Dirichlet空间的闭包性
IF 0.9 4区 数学
Annales Academiae Scientiarum Fennicae-Mathematica Pub Date : 2020-06-01 DOI: 10.5186/aasfm.2020.4533
Bin Liu, J. Rättyä
{"title":"Closure of Bergman and Dirichlet spaces in the Bloch norm","authors":"Bin Liu, J. Rättyä","doi":"10.5186/aasfm.2020.4533","DOIUrl":"https://doi.org/10.5186/aasfm.2020.4533","url":null,"abstract":"where dA(z) = dx dy π is the normalized Lebesgue area measure on D. In this definition we understand that the sum does not exist if n = 0. Throughout this paper ω satisfies ω̂(z) = ́ 1 |z| ω(s) ds > 0 for all z ∈ D, for otherwise Aω,n = H(D). We write A p ω = A p ω,0 and D ω = A p ω,1 for the weighted Bergman and Dirichlet spaces, respectively. As usual, Aα and D p α denote the classical weighted Bergman and Dirichlet spaces induced by the standard radial weight ω(z) = (1−|z|), where −1 < α < ∞. For f ∈ H(D) and 0 < r < 1, set","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76084490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
On A_p–A_q weighted estimates for maximal operators 极大算子的A_p-A_q加权估计
IF 0.9 4区 数学
Annales Academiae Scientiarum Fennicae-Mathematica Pub Date : 2020-06-01 DOI: 10.5186/aasfm.2020.4544
A. Osȩkowski
{"title":"On A_p–A_q weighted estimates for maximal operators","authors":"A. Osȩkowski","doi":"10.5186/aasfm.2020.4544","DOIUrl":"https://doi.org/10.5186/aasfm.2020.4544","url":null,"abstract":"","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86616290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the average L^q-dimensions of typical measures belonging to the Gromov–Hausdorff–Prohoroff space. The limiting cases: q = 1 and q = ∞ 关于属于Gromov-Hausdorff-Prohoroff空间的典型测度的平均L^q维。极限情况:q = 1和q =∞
IF 0.9 4区 数学
Annales Academiae Scientiarum Fennicae-Mathematica Pub Date : 2020-06-01 DOI: 10.5186/aasfm.2020.4535
L. Olsen
{"title":"On the average L^q-dimensions of typical measures belonging to the Gromov–Hausdorff–Prohoroff space. The limiting cases: q = 1 and q = ∞","authors":"L. Olsen","doi":"10.5186/aasfm.2020.4535","DOIUrl":"https://doi.org/10.5186/aasfm.2020.4535","url":null,"abstract":"Abstract. We study the averageL-dimensions of typical Borel probability measures belonging to the Gromov–Hausdorff–Prohoroff space (of all Borel probability measures with compact supports) equipped with the Gromov–Hausdorff–Prohoroff metric. Previously the lower and upper average L-dimensions of a typical measure μ have been found for q ∈ (1,∞). In this paper we determine the lower and upper average L-dimensions of a typical measure μ in the two limiting cases: q = 1 and q = ∞. In particular, we prove that a typical measure μ is as irregular as possible: for q = 1 and q = ∞, the lower average L-dimension attains the smallest possible value, namely 0, and the upper average L-dimension attains the largest possible value, namely ∞. The proofs rely on some non-trivial semi-continuity properties of L-dimensions that may be of interest in their own right.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79586509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on Lusin's condition (N) for W_loc^1,n-mappings with convex potentials 关于W_loc^1, N -凸势映射的Lusin条件(N)的注释
IF 0.9 4区 数学
Annales Academiae Scientiarum Fennicae-Mathematica Pub Date : 2020-06-01 DOI: 10.5186/aasfm.2020.4555
Diego Maldonado
{"title":"A note on Lusin's condition (N) for W_loc^1,n-mappings with convex potentials","authors":"Diego Maldonado","doi":"10.5186/aasfm.2020.4555","DOIUrl":"https://doi.org/10.5186/aasfm.2020.4555","url":null,"abstract":"","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85318571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
On Hilbert boundary value problem for Beltrami equation 关于Beltrami方程的Hilbert边值问题
IF 0.9 4区 数学
Annales Academiae Scientiarum Fennicae-Mathematica Pub Date : 2020-06-01 DOI: 10.5186/aasfm.2020.4552
V. Gutlyanskiĭ, V. Ryazanov, E. Yakubov, A. Yefimushkin
{"title":"On Hilbert boundary value problem for Beltrami equation","authors":"V. Gutlyanskiĭ, V. Ryazanov, E. Yakubov, A. Yefimushkin","doi":"10.5186/aasfm.2020.4552","DOIUrl":"https://doi.org/10.5186/aasfm.2020.4552","url":null,"abstract":"We study the Hilbert boundary value problem for the Beltrami equation in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring–Martio, generally speaking, without (A)-condition by Ladyzhenskaya–Ural’tseva that was standard for boundary value problems in the PDE theory. Assuming that the coefficients of the problem are functions of countable bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of the generalized regular solutions. As a consequence, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré boundary value problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78085850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信