关于Beltrami方程的Hilbert边值问题

IF 0.9 4区 数学 Q2 Mathematics
V. Gutlyanskiĭ, V. Ryazanov, E. Yakubov, A. Yefimushkin
{"title":"关于Beltrami方程的Hilbert边值问题","authors":"V. Gutlyanskiĭ, V. Ryazanov, E. Yakubov, A. Yefimushkin","doi":"10.5186/aasfm.2020.4552","DOIUrl":null,"url":null,"abstract":"We study the Hilbert boundary value problem for the Beltrami equation in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring–Martio, generally speaking, without (A)-condition by Ladyzhenskaya–Ural’tseva that was standard for boundary value problems in the PDE theory. Assuming that the coefficients of the problem are functions of countable bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of the generalized regular solutions. As a consequence, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré boundary value problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On Hilbert boundary value problem for Beltrami equation\",\"authors\":\"V. Gutlyanskiĭ, V. Ryazanov, E. Yakubov, A. Yefimushkin\",\"doi\":\"10.5186/aasfm.2020.4552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Hilbert boundary value problem for the Beltrami equation in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring–Martio, generally speaking, without (A)-condition by Ladyzhenskaya–Ural’tseva that was standard for boundary value problems in the PDE theory. Assuming that the coefficients of the problem are functions of countable bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of the generalized regular solutions. As a consequence, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré boundary value problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2020.4552\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4552","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

摘要

本文用gehling - martio方法研究了Jordan域上满足拟双曲边界条件的Beltrami方程的Hilbert边值问题,一般来说,不需要Ladyzhenskaya-Ural 'tseva的边值问题标准(A)-条件。假设问题的系数是可数有界变分函数,边界数据是对数容量可测的,证明了问题的广义正则解的存在性。因此,我们得到了各向异性和非齐次介质中拉普拉斯方程推广的Dirichlet、Neumann和poincar边值问题的非经典解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Hilbert boundary value problem for Beltrami equation
We study the Hilbert boundary value problem for the Beltrami equation in the Jordan domains satisfying the quasihyperbolic boundary condition by Gehring–Martio, generally speaking, without (A)-condition by Ladyzhenskaya–Ural’tseva that was standard for boundary value problems in the PDE theory. Assuming that the coefficients of the problem are functions of countable bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of the generalized regular solutions. As a consequence, we derive the existence of nonclassical solutions of the Dirichlet, Neumann and Poincaré boundary value problems for generalizations of the Laplace equation in anisotropic and inhomogeneous media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信