{"title":"Bloch范数中Bergman和Dirichlet空间的闭包性","authors":"Bin Liu, J. Rättyä","doi":"10.5186/aasfm.2020.4533","DOIUrl":null,"url":null,"abstract":"where dA(z) = dx dy π is the normalized Lebesgue area measure on D. In this definition we understand that the sum does not exist if n = 0. Throughout this paper ω satisfies ω̂(z) = ́ 1 |z| ω(s) ds > 0 for all z ∈ D, for otherwise Aω,n = H(D). We write A p ω = A p ω,0 and D ω = A p ω,1 for the weighted Bergman and Dirichlet spaces, respectively. As usual, Aα and D p α denote the classical weighted Bergman and Dirichlet spaces induced by the standard radial weight ω(z) = (1−|z|), where −1 < α < ∞. For f ∈ H(D) and 0 < r < 1, set","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Closure of Bergman and Dirichlet spaces in the Bloch norm\",\"authors\":\"Bin Liu, J. Rättyä\",\"doi\":\"10.5186/aasfm.2020.4533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"where dA(z) = dx dy π is the normalized Lebesgue area measure on D. In this definition we understand that the sum does not exist if n = 0. Throughout this paper ω satisfies ω̂(z) = ́ 1 |z| ω(s) ds > 0 for all z ∈ D, for otherwise Aω,n = H(D). We write A p ω = A p ω,0 and D ω = A p ω,1 for the weighted Bergman and Dirichlet spaces, respectively. As usual, Aα and D p α denote the classical weighted Bergman and Dirichlet spaces induced by the standard radial weight ω(z) = (1−|z|), where −1 < α < ∞. For f ∈ H(D) and 0 < r < 1, set\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2020.4533\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4533","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4
摘要
其中dA(z) = dx dy π是d上的标准化勒贝格面积度量。在这个定义中,我们理解如果n = 0,则和不存在。在本文中,对于所有z∈D, ω满足ω ω(z) = 1 |z| ω(s) ds > 0,否则为Aω,n = H(D)。对于加权的Bergman和Dirichlet空间,我们分别写成A p ω = A p ω,0和D ω = A p ω,1。通常,Aα和D p α表示由标准径向权ω(z) =(1−|z|)导出的经典加权Bergman和Dirichlet空间,其中−1 < α <∞。对于f∈H(D)且0 < r < 1,设
Closure of Bergman and Dirichlet spaces in the Bloch norm
where dA(z) = dx dy π is the normalized Lebesgue area measure on D. In this definition we understand that the sum does not exist if n = 0. Throughout this paper ω satisfies ω̂(z) = ́ 1 |z| ω(s) ds > 0 for all z ∈ D, for otherwise Aω,n = H(D). We write A p ω = A p ω,0 and D ω = A p ω,1 for the weighted Bergman and Dirichlet spaces, respectively. As usual, Aα and D p α denote the classical weighted Bergman and Dirichlet spaces induced by the standard radial weight ω(z) = (1−|z|), where −1 < α < ∞. For f ∈ H(D) and 0 < r < 1, set
期刊介绍:
Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio.
AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.