Bloch范数中Bergman和Dirichlet空间的闭包性

IF 0.9 4区 数学 Q2 Mathematics
Bin Liu, J. Rättyä
{"title":"Bloch范数中Bergman和Dirichlet空间的闭包性","authors":"Bin Liu, J. Rättyä","doi":"10.5186/aasfm.2020.4533","DOIUrl":null,"url":null,"abstract":"where dA(z) = dx dy π is the normalized Lebesgue area measure on D. In this definition we understand that the sum does not exist if n = 0. Throughout this paper ω satisfies ω̂(z) = ́ 1 |z| ω(s) ds > 0 for all z ∈ D, for otherwise Aω,n = H(D). We write A p ω = A p ω,0 and D ω = A p ω,1 for the weighted Bergman and Dirichlet spaces, respectively. As usual, Aα and D p α denote the classical weighted Bergman and Dirichlet spaces induced by the standard radial weight ω(z) = (1−|z|), where −1 < α < ∞. For f ∈ H(D) and 0 < r < 1, set","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Closure of Bergman and Dirichlet spaces in the Bloch norm\",\"authors\":\"Bin Liu, J. Rättyä\",\"doi\":\"10.5186/aasfm.2020.4533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"where dA(z) = dx dy π is the normalized Lebesgue area measure on D. In this definition we understand that the sum does not exist if n = 0. Throughout this paper ω satisfies ω̂(z) = ́ 1 |z| ω(s) ds > 0 for all z ∈ D, for otherwise Aω,n = H(D). We write A p ω = A p ω,0 and D ω = A p ω,1 for the weighted Bergman and Dirichlet spaces, respectively. As usual, Aα and D p α denote the classical weighted Bergman and Dirichlet spaces induced by the standard radial weight ω(z) = (1−|z|), where −1 < α < ∞. For f ∈ H(D) and 0 < r < 1, set\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2020.4533\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4533","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

其中dA(z) = dx dy π是d上的标准化勒贝格面积度量。在这个定义中,我们理解如果n = 0,则和不存在。在本文中,对于所有z∈D, ω满足ω ω(z) = 1 |z| ω(s) ds > 0,否则为Aω,n = H(D)。对于加权的Bergman和Dirichlet空间,我们分别写成A p ω = A p ω,0和D ω = A p ω,1。通常,Aα和D p α表示由标准径向权ω(z) =(1−|z|)导出的经典加权Bergman和Dirichlet空间,其中−1 < α <∞。对于f∈H(D)且0 < r < 1,设
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closure of Bergman and Dirichlet spaces in the Bloch norm
where dA(z) = dx dy π is the normalized Lebesgue area measure on D. In this definition we understand that the sum does not exist if n = 0. Throughout this paper ω satisfies ω̂(z) = ́ 1 |z| ω(s) ds > 0 for all z ∈ D, for otherwise Aω,n = H(D). We write A p ω = A p ω,0 and D ω = A p ω,1 for the weighted Bergman and Dirichlet spaces, respectively. As usual, Aα and D p α denote the classical weighted Bergman and Dirichlet spaces induced by the standard radial weight ω(z) = (1−|z|), where −1 < α < ∞. For f ∈ H(D) and 0 < r < 1, set
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信