C^n上广义Fock-Sobolev空间上的Hankel双线性形式

IF 0.9 4区 数学 Q2 Mathematics
C. Cascante, J. Fàbrega, D. Pascuas
{"title":"C^n上广义Fock-Sobolev空间上的Hankel双线性形式","authors":"C. Cascante, J. Fàbrega, D. Pascuas","doi":"10.5186/aasfm.2020.4546","DOIUrl":null,"url":null,"abstract":"We characterize the boundedness of Hankel bilinear forms on a product of generalized Fock–Sobolev spaces on C with respect to the weight (1 + |z|)e α 2 |z| , for l ≥ 1, α > 0 and ρ ∈ R. We obtain a weak decomposition of the Bergman kernel with estimates and a Littlewood– Paley formula, which are key ingredients in the proof of our main results. As an application, we characterize the boundedness, compactness and the membership in the Schatten class of small Hankel operators on these spaces.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hankel bilinear forms on generalized Fock–Sobolev spaces on C^n\",\"authors\":\"C. Cascante, J. Fàbrega, D. Pascuas\",\"doi\":\"10.5186/aasfm.2020.4546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize the boundedness of Hankel bilinear forms on a product of generalized Fock–Sobolev spaces on C with respect to the weight (1 + |z|)e α 2 |z| , for l ≥ 1, α > 0 and ρ ∈ R. We obtain a weak decomposition of the Bergman kernel with estimates and a Littlewood– Paley formula, which are key ingredients in the proof of our main results. As an application, we characterize the boundedness, compactness and the membership in the Schatten class of small Hankel operators on these spaces.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2020.4546\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4546","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

我们刻画了C上广义Fock-Sobolev空间积上的Hankel双线性形式对权(1 + |z|)e α 2 |z|的有界性,对于l≥1,α > 0, ρ∈r。我们得到了Bergman核的一个弱分解和一个Littlewood - Paley公式,这是证明我们的主要结果的关键成分。作为应用,我们刻画了这些空间上的小Hankel算子的Schatten类的有界性、紧性和隶属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hankel bilinear forms on generalized Fock–Sobolev spaces on C^n
We characterize the boundedness of Hankel bilinear forms on a product of generalized Fock–Sobolev spaces on C with respect to the weight (1 + |z|)e α 2 |z| , for l ≥ 1, α > 0 and ρ ∈ R. We obtain a weak decomposition of the Bergman kernel with estimates and a Littlewood– Paley formula, which are key ingredients in the proof of our main results. As an application, we characterize the boundedness, compactness and the membership in the Schatten class of small Hankel operators on these spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信