Journal of Physics D: Applied Physics最新文献

筛选
英文 中文
High Energy Density of Biaxially Oriented Polypropylene Film in Cryogenic Environment for Advanced Capacitor 低温环境下用于先进电容器的高能量密度双向拉伸聚丙烯薄膜
Journal of Physics D: Applied Physics Pub Date : 2024-07-22 DOI: 10.1088/1361-6463/ad6610
B. Du, Ke Chen, Haoliang Liu, M. Xiao
{"title":"High Energy Density of Biaxially Oriented Polypropylene Film in Cryogenic Environment for Advanced Capacitor","authors":"B. Du, Ke Chen, Haoliang Liu, M. Xiao","doi":"10.1088/1361-6463/ad6610","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6610","url":null,"abstract":"\u0000 In this paper, a method of significantly increasing the energy density of biaxially oriented polypropylene (BOPP) film by cryogenic environment has been proposed. The notable enhancements in the dielectric and energy storage performance can be attributed to precise microstructure manipulation, aimed at controlling charge injection limitations and optimizing molecular chain dynamics. The experimental results show that the maximum discharged energy density of BOPP film with thicknesses of 3.4 μm has reached 11.83 J/cm3 at -196 °C (2.9 times that at 25 °C) with a charge-discharge efficiency of 92.74%. The DC breakdown strength as high as 1120.4 kV/mm is obtained at -196 °C, exhibiting a substantial 63.7% augmentation compared to the measurement at 25 °C. Furthermore, reductions in conductance loss and capacitance loss (post self-healing testing) are realized. Mechanistic insights into the observed enhancements are investigated through computational simulations. This research provides a pivotal advancement and valuable perspective towards the development of film capacitors boasting the excellent energy storage characteristics.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141817023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transformer Coupled Toroidal Wave-Heated Remote Plasma Sources Operating in in Ar/NF3 Mixtures 在 Ar/NF3 混合物中运行的变压器耦合环形波加热远程等离子体源
Journal of Physics D: Applied Physics Pub Date : 2024-07-22 DOI: 10.1088/1361-6463/ad660f
S. Doyle, Amanda Larson, Guy Rosenzweig, James Gunn, M. Kushner
{"title":"Transformer Coupled Toroidal Wave-Heated Remote Plasma Sources Operating in in Ar/NF3 Mixtures","authors":"S. Doyle, Amanda Larson, Guy Rosenzweig, James Gunn, M. Kushner","doi":"10.1088/1361-6463/ad660f","DOIUrl":"https://doi.org/10.1088/1361-6463/ad660f","url":null,"abstract":"\u0000 Remote plasmas are used in semiconductor device manufacturing as sources of radicals for chamber cleaning and isotropic etching. In these applications, large fluxes of neutral radicals (e.g., F, O, Cl, H) are desired with there being negligible fluxes of potentially damaging ions and photons. One remote plasma source (RPS) design employs toroidal, transformer coupling using ferrite cores to dissociate high flows of moderately high pressure (up to several Torr) electronegative gases. In this paper, results are discussed from a computational investigation of moderate pressure, toroidal transformer coupled RPS sustained in Ar and Ar/NF3 mixtures. Operation of the RPS in 1 Torr of argon with a power of 1.0 kW at 0.5 MHz and a single core produces a continuous toroidal plasma loop with current continuity being maintained dominantly by conduction current. Operation with dual cores introduces azimuthal asymmetries with local maxima in plasma density. Current continuity is maintained by a mix of conduction and displacement current. Operation in NF3 for the same conditions produces essentially complete NF3 dissociation. Electron depletion as a result of dissociative attachment of NF3 and NFx fragments significantly alters the discharge topology, confining the electron density to the downstream portion of the source where the NFx density has been lowered by this dissociation.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141816986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ab initio study of helium behavior near stacking faults in 3C-SiC 3C-SiC 堆叠断层附近氦行为的 Ab initio 研究
Journal of Physics D: Applied Physics Pub Date : 2024-07-19 DOI: 10.1088/1361-6463/ad6576
Rongshan Wang, Limin Zhang, Weilin Jiang, N. Daghbouj, T. Polcar, Ahsan Ejaz, Zhiqiang Wang, Liang Chen, Tieshan Wang
{"title":"Ab initio study of helium behavior near stacking faults in 3C-SiC","authors":"Rongshan Wang, Limin Zhang, Weilin Jiang, N. Daghbouj, T. Polcar, Ahsan Ejaz, Zhiqiang Wang, Liang Chen, Tieshan Wang","doi":"10.1088/1361-6463/ad6576","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6576","url":null,"abstract":"\u0000 First-principles calculations are used to investigate the effects of stacking faults (SFs) on helium trapping and diffusion in cubic silicon carbon (3C-SiC). Both extrinsic and intrinsic SFs in 3C-SiC create a hexagonal stacking sequence. The hexagonal structure is found to be a strong sink of a helium interstitial. Compared to perfect 3C-SiC, the energy barriers for helium migration near the SFs increase significantly, leading to predominant helium diffusion between the SFs in two dimensions. This facilitates the migration of helium towards interface traps, as confirmed by previous experimental reports on the nanocrystalline 3C-SiC containing a high density of SFs. This study also reveals that the formation of helium interstitial clusters near the SFs is not energetically favored. The findings from this study enhance our comprehension of helium behavior in faulted 3C-SiC, offering valuable insights for the design of helium-tolerant SiC materials intended for reactor applications.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141824213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manganite Memristive Devices: Recent Progress and Emerging Opportunities 锰酸盐薄膜设备:最新进展与新机遇
Journal of Physics D: Applied Physics Pub Date : 2024-07-19 DOI: 10.1088/1361-6463/ad6575
A. Schulman, H. Huhtinen, P. Paturi
{"title":"Manganite Memristive Devices: Recent Progress and Emerging Opportunities","authors":"A. Schulman, H. Huhtinen, P. Paturi","doi":"10.1088/1361-6463/ad6575","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6575","url":null,"abstract":"\u0000 Manganite-based memristive devices have emerged as promising candidates for next-generation non-volatile memory and neuromorphic computing applications, owing to their unique resistive switching behavior and tunable electronic properties. This review explores recent innovations in manganite-based memristive devices, with a focus on materials engineering, device architectures, and fabrication techniques. We delve into the underlying mechanisms governing resistive switching in manganite thin films, elucidating the intricate interplay of oxygen vacancies, charge carriers, and structural modifications. This review underscores breakthroughs in harnessing manganite memristors for a range of applications, from high-density memory storage to neuromorphic computing platforms that mimic synaptic and neuronal functionalities. Additionally, we discuss the role of characterization techniques and the need for a unified benchmark for these devices. We provide insights into the challenges and opportunities associated with the co-integration of manganite-based memristive devices with more mature technologies, offering a roadmap for future research directions.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141823836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure scaling laws for partial discharges in wedge-shaped, dielectric-bounded gas gaps 楔形介质束缚气隙中局部放电的压力缩放定律
Journal of Physics D: Applied Physics Pub Date : 2024-07-19 DOI: 10.1088/1361-6463/ad6577
R. Färber, O. Šefl, Christian M. Franck
{"title":"Pressure scaling laws for partial discharges in wedge-shaped, dielectric-bounded gas gaps","authors":"R. Färber, O. Šefl, Christian M. Franck","doi":"10.1088/1361-6463/ad6577","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6577","url":null,"abstract":"\u0000 A pressure scaling law for the partial discharge inception voltage (PDIV) of wedge-shaped, dielectric-bounded gas gaps is derived and experimentally validated. The investigated prototypical electrode geometry is of relevance in a number of practical applications, such as contacting enamelled wires in electric motors or transformers. The derived pressure scaling law is of particular interest for electric propulsion in aviation systems. The results show that the PDIV can be accurately parametrized from first principles as a function of the scaling parameter p·s/εr, where p is the gas pressure, s is the thickness of the insulating coating and εr its relative dielectric permittivity. Previously published empirical relationships between the PDIV and pressure are shown to be local approximations of the presented general scaling law. In particular, the often assumed linear relation of PDIV with pressure is shown to not be generally valid.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141823300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial optoelectronic synapses based on flexible and transparent oxide transistors 基于柔性透明氧化物晶体管的人工光电突触
Journal of Physics D: Applied Physics Pub Date : 2024-07-17 DOI: 10.1088/1361-6463/ad6454
Muhammad Irfan Sadiq, Muhammad Zahid, Chenxing Jin, Xiaofang Shi, Wanrong Liu, Yunchao Xu, Muhammad Tahir, Fawad Aslam, Jun-liang Yang, Jia Sun
{"title":"Artificial optoelectronic synapses based on flexible and transparent oxide transistors","authors":"Muhammad Irfan Sadiq, Muhammad Zahid, Chenxing Jin, Xiaofang Shi, Wanrong Liu, Yunchao Xu, Muhammad Tahir, Fawad Aslam, Jun-liang Yang, Jia Sun","doi":"10.1088/1361-6463/ad6454","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6454","url":null,"abstract":"\u0000 The development of artificial optoelectronic synapses utilizing flexible, and transparent oxide transistors is crucial for advancing neuromorphic computing and wearable electronics. Here, we propose artificial optoelectronic synapses on flexible and transparent devices based on an ion-gel gated oxide transistor. The device consists of indium-tin-oxide (ITO)/ion-gel thin film conformity fabricated on a Polyethylene terephthalate (PET) substrate. The device exhibited a loop opening in current-voltage properties, and its operating mechanism was ascribed to charge trapping and de-trapping. The neuromorphic behaviours can also be simulated by this device for instance, namely Ultraviolet (UV) induced short-term memory (STM), long-term memory (LTM), paired-pulse facilitation (PPF), and learning/forgetting behaviors. Additionally, electrical habituation and UV potentiation were executed. This work paves the way for the realization of low-cost flexible and transparent synaptic wearable electronics.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141828998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Ar-ion irradiation on electrical transport of WS2 monolayer 氩离子辐照对 WS2 单层电传输的影响
Journal of Physics D: Applied Physics Pub Date : 2024-07-16 DOI: 10.1088/1361-6463/ad5f3e
Bhumit Luhar, D. Thakur, B. R. Naik, V. Balakrishnan
{"title":"Effect of Ar-ion irradiation on electrical transport of WS2 monolayer","authors":"Bhumit Luhar, D. Thakur, B. R. Naik, V. Balakrishnan","doi":"10.1088/1361-6463/ad5f3e","DOIUrl":"https://doi.org/10.1088/1361-6463/ad5f3e","url":null,"abstract":"\u0000 Two-dimensional transition metal dichalcogenides (2D-TMDs), such as WS2 and MoS2, have attracted exceptional attention as promising materials for future optoelectronic systems due to their unique properties, including a direct band gap, high quantum efficiency, and flexibility. However, exploiting these materials’ potential in their pristine state remains a key challenge because of limited tunability and control over their properties. The introduction of crystal defects, such as vacancies and dopants, induces localized mid-gap states in 2D materials, enhances electrical transport, and creates a platform for tuning and exploiting these materials for practical applications. Our study explores the effect of Ar-ion beam irradiation on monolayer WS2, resulting in enhanced electrical transport compared to the pristine sample. We regulated the Ar-ion bombardment energy to vary the defect concentration from 0.1 to 0.5 keV. Photoluminescence (PL) and Raman investigations, revealed the extent of damage to the material. At the same time, x-ray photoelectron spectroscopy showed changes in the oxidation state with increasing irradiation energy. Our results demonstrated that Ar-ion treatment at low-energy irradiation enhanced electrical transport by ∼12 fold compared to pristine till 0.2 keV of irradiation by incorporating defects. However, higher irradiation energies reduced electrical transport due to increased disorder in the WS2 monolayer. This investigation highlights the potential for controlled defect engineering to optimize the properties of 2D-TMDs for practical applications.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First-principles explorations on 2D transition metal diborides featuring inverse sandwich structures and their gas sensing properties 具有反三明治结构的二维过渡金属二硼化物及其气体传感特性的第一性原理探索
Journal of Physics D: Applied Physics Pub Date : 2024-07-15 DOI: 10.1088/1361-6463/ad6331
Shukai Wang, Kai Shi, Jie Li, Juan Lyu, Fengyu Li
{"title":"First-principles explorations on 2D transition metal diborides featuring inverse sandwich structures and their gas sensing properties","authors":"Shukai Wang, Kai Shi, Jie Li, Juan Lyu, Fengyu Li","doi":"10.1088/1361-6463/ad6331","DOIUrl":"https://doi.org/10.1088/1361-6463/ad6331","url":null,"abstract":"\u0000 First-principles calculations were carried out to investigate the stability of two dimensional (2D) MB2 monolayers (TiB2-I, VB2-I, MnB2-I, TiB2-II, ScB2-II, NiB2-II) with an inverse sandwich configuration and their potential as efficient gas sensors to detect toxic gas molecules. We first identified five stable 2D MB2 configurations, based on stability evaluation covering thermodynamical, dynamical, and thermal aspects. To investigate the performance of these novel structures as gas sensors, the adsorption behavior of five toxic gas molecules (CO, NO, NO2, NH3, SO2) on MB2 has been explored, and the charge transfer and magnetic changes of these adsorption systems were analyzed. It is found that five gases are all chemisorbed on 2D MB2. Particularly, when CO is adsorbed on TiB2-II, the magnetism of the system undergoes a significant change from non-magnetism to antiferromagnetism, showing selectivity for CO. Furthermore, the current−voltage characteristics obtained from simulations confirm gas sensing performance. The TiB2-II is expected to be a candidate material for CO gas sensor with short recovery time (7.50 ×10−10 s). Our theoretical study provides new ideas for designing gas sensor nanomaterials with magnetism alteration as the indicator featuring easy measurement and fast response.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141646128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Saturable absorption properties of mixed lead-tin halide perovskites and their application in near-infrared ultrafast lasers 混合卤化铅锡包晶石的饱和吸收特性及其在近红外超快激光器中的应用
Journal of Physics D: Applied Physics Pub Date : 2024-07-15 DOI: 10.1088/1361-6463/ad632d
Xinru Lan, Cheng Yang, Chengming Wei, Jiabao Liu, Zeyu Zhang, Zhengwei Chen, Xu Wang, Ziyang Hu
{"title":"Saturable absorption properties of mixed lead-tin halide perovskites and their application in near-infrared ultrafast lasers","authors":"Xinru Lan, Cheng Yang, Chengming Wei, Jiabao Liu, Zeyu Zhang, Zhengwei Chen, Xu Wang, Ziyang Hu","doi":"10.1088/1361-6463/ad632d","DOIUrl":"https://doi.org/10.1088/1361-6463/ad632d","url":null,"abstract":"\u0000 Mixed lead-tin halide perovskites, as highly sensitive materials in the near-infrared region, hold significant potential for optoelectronic device applications. Here, mixed lead-tin halide perovskite saturable absorbers (SAs) have been developed by coupling with the side-polished surfaces of the single-mode fibers and excellent saturable absorption effects of the mixed lead-tin halide perovskite SAs have been demonstrated in the near-infrared region. By constructing the in-gap site assisted carrier transfer mode, the saturation absorption process of the mixed lead-tin halide perovskite SAs can be well explained, in which defects as in-gap sites can help the photon-generated carriers transfer into the conduction band and promote the Pauli-blocking-induced absorption bleaching in the SA. Moreover, ytterbium-doped fiber lasers based on perovskite SAs have been fabricated, and mode-locked operations at 1040 nm are achieved using the mixed lead-tin halide perovskite SA, generating ultra-short pulses with a pulse width of 683 fs, 3dB bandwidth of 4.88 nm, signal-to-noise ratio exceeding 49.74 dB, and a repetition rate of 3.74 MHz. Our findings demonstrate that the mixed lead-tin halide perovskite SAs have excellent optical modulation capability and promising applications in the field of ultrafast photonics.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mn-based Noncollinear Antiferromagnets and Altermagnets 锰基非共线反铁磁体和异种磁体
Journal of Physics D: Applied Physics Pub Date : 2024-07-15 DOI: 10.1088/1361-6463/ad632b
Shaohai Chen, Dennis J. X. Lin, B. C. Lim, Pin Ho
{"title":"Mn-based Noncollinear Antiferromagnets and Altermagnets","authors":"Shaohai Chen, Dennis J. X. Lin, B. C. Lim, Pin Ho","doi":"10.1088/1361-6463/ad632b","DOIUrl":"https://doi.org/10.1088/1361-6463/ad632b","url":null,"abstract":"\u0000 Antiferromagnets and altermagnets, with robustness, scalability and topological properties, emerge as promising contenders for next-generation spintronics, quantum and terahertz communication applications. Recent strides in Mn-based noncollinear antiferromagnetic (AF) and altermagnetic (AL) material platforms showcase remarkable progress and fascinating discoveries, such as in spin-orbit and tunnelling phenomena, affirming the viability of antiferromagnet and altermagnet-centric spintronic devices. This review explores the latest advancements in noncollinear Mn3X (X = Pt, Ir, Sn, Ga, Ge) AF and MnY (Y = F2, O2, Si0.6, Te) AL materials, wherein the quintessential phenomena originate from their intricate crystal structures. For the former, the article delves into their growth techniques, physical properties, as well as advancements in the electrical manipulation of AF order and multimodal electrical, optical, and thermal detection. For the latter, the review encapsulates theoretical understanding and experimental demonstration of AL materials and device physics pertinent to promising applications. This serves to direct efforts towards the imminent realization of AF and AL active elements in replacement of conventional ferromagnetic materials in spintronic devices.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141643981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信