A perspective on manganese-based flow batteries

Xinan Wang, Mei Ding, C. Jia
{"title":"A perspective on manganese-based flow batteries","authors":"Xinan Wang, Mei Ding, C. Jia","doi":"10.1088/1361-6463/ad626b","DOIUrl":null,"url":null,"abstract":"\n Manganese (Mn), possessing ample reserves on the earth, exhibits various oxidation states and garners significant attentions within the realm of battery technology. Mn-based flow batteries (MFBs) are recognized as viable contenders for energy storage owing to their environmentally sustainable nature, economic feasibility, and enhanced safety features. Nevertheless, the advancement of MFBs is hindered by contentious reaction mechanisms, suboptimal energy density, and inadequate cycling stability. This review offers a comprehensive analysis of various MFBs based on the specific redox couples utilized in the catholyte, including Mn3+/Mn2+, MnO2/Mn2+, and MnO4-/MnO42-. Moreover, recent advancements and concerns encountered by each type of MFBs are subsequently addressed and discussed in detail. Additionally, the current understanding of the mechanisms for different Mn-based pairs and their potentials for energy storage applications are introduced. Finally, challenges for the future development of MFBs, along with suggested improvement strategies are outlined.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad626b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Manganese (Mn), possessing ample reserves on the earth, exhibits various oxidation states and garners significant attentions within the realm of battery technology. Mn-based flow batteries (MFBs) are recognized as viable contenders for energy storage owing to their environmentally sustainable nature, economic feasibility, and enhanced safety features. Nevertheless, the advancement of MFBs is hindered by contentious reaction mechanisms, suboptimal energy density, and inadequate cycling stability. This review offers a comprehensive analysis of various MFBs based on the specific redox couples utilized in the catholyte, including Mn3+/Mn2+, MnO2/Mn2+, and MnO4-/MnO42-. Moreover, recent advancements and concerns encountered by each type of MFBs are subsequently addressed and discussed in detail. Additionally, the current understanding of the mechanisms for different Mn-based pairs and their potentials for energy storage applications are introduced. Finally, challenges for the future development of MFBs, along with suggested improvement strategies are outlined.
透视锰基液流电池
锰(Mn)在地球上储量丰富,具有多种氧化态,在电池技术领域备受关注。基于锰的液流电池(MFBs)因其环境可持续发展性、经济可行性和更高的安全性,被公认为是能源存储的可行竞争者。然而,由于反应机理存在争议、能量密度不够理想以及循环稳定性不足,阻碍了 MFB 的发展。本综述根据电解质中使用的特定氧化还原偶(包括 Mn3+/Mn2+、MnO2/Mn2+ 和 MnO4-/MnO42-)对各种 MFB 进行了全面分析。此外,随后还详细讨论了每种类型的 MFB 最近取得的进展和遇到的问题。此外,还介绍了目前对不同锰基对的机理及其在储能应用中的潜力的理解。最后,概述了 MFB 未来发展所面临的挑战以及建议的改进策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信