Annales Geophysicae最新文献

筛选
英文 中文
Ionospheric upwelling and the level of associated noise at solar minimum 电离层上涌和太阳极小期的相关噪声水平
IF 1.7 4区 地球科学
Annales Geophysicae Pub Date : 2024-07-24 DOI: 10.5194/angeo-42-349-2024
Timothy Wemimo David, Chizurumoke Michael Michael, Darren Wright, A. T. Talabi, A. Ajetunmobi
{"title":"Ionospheric upwelling and the level of associated noise at solar minimum","authors":"Timothy Wemimo David, Chizurumoke Michael Michael, Darren Wright, A. T. Talabi, A. Ajetunmobi","doi":"10.5194/angeo-42-349-2024","DOIUrl":"https://doi.org/10.5194/angeo-42-349-2024","url":null,"abstract":"Abstract. We have studied the ionospheric upwelling with a magnitude of above 1013 m−2 s−1 using the data during the European Incoherent Scatter Scientific Association (EISCAT) Svalbard Radar International Polar Year (IPY-ESR) 2007 campaign, which coincides with the solar minimum. The noise level in low-, medium- and high-flux upflows is investigated. We found that the noise level in high-flux upflow is about 93 %, while in the low and medium categories it is 62 % and 80 %, respectively. This shows that robust and stringent filtering techniques must be ensured when analysing incoherent data in order not to introduce bias to the result. Analysis reveals that the frequency of the low-flux upflow events is about 8 and 73 times the medium- and high-flux upflow events, respectively. Seasonal observation shows that the noise level in the upflow classes is predominantly high during winter. The noise is minimal in summer, with a notable result indicating occurrence of actual data above noise in the low-flux class. Moreover, the percentage occurrence of the noise level in the data increases with increasing flux strength, irrespective of the season. Further analysis reveals that the noise level in the local time variation peaked around 17:00–18:00 LT (local time) and minimum around 12:00 LT.\u0000","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141806502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity analysis of a Martian atmospheric column model with data from the Mars Science Laboratory 利用火星科学实验室的数据对火星大气柱模型进行灵敏度分析
IF 1.7 4区 地球科学
Annales Geophysicae Pub Date : 2024-07-23 DOI: 10.5194/angeo-42-331-2024
J. Leino, A. Harri, M. Paton, J. Polkko, M. Hieta, H. Savijärvi
{"title":"Sensitivity analysis of a Martian atmospheric column model with data from the Mars Science Laboratory","authors":"J. Leino, A. Harri, M. Paton, J. Polkko, M. Hieta, H. Savijärvi","doi":"10.5194/angeo-42-331-2024","DOIUrl":"https://doi.org/10.5194/angeo-42-331-2024","url":null,"abstract":"Abstract. An extensive sensitivity analysis was performed for a horizontally homogeneous and hydrostatic 1-D column model at the Mars Science Laboratory (MSL) location. Model experiments were compared with observations from the Curiosity Rover Environmental Monitoring Station humidity (REMS-H) device and ChemCam. Based on our earlier column model investigations, model surface temperature and pressure, dust optical depth (τ), and column precipitable water content (PWC) were the parameters that we investigated with our sensitivity analysis. Our analysis suggests that the most sensitive parameters for the column model temperature profile are τ and surface temperature. The initial value of PWC does not affect the temperature profile of the model, but it is the most important parameter for the humidity profile. The fixed value of τ also seems to have some effect on the humidity profile of the model. Based on our analysis, variations in surface pressure initialization are negligible for the model's temperature and almost negligible for the model's humidity predictions. The model simulations are generally in good agreement with the observations. Our additional model experiments with a different shape of the model's initial humidity profile yielded better results compared to the well-mixed assumption in the predicted water vapor volume mixing ratios at 1.6 m.\u0000","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141813844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-frequency solar radio type II bursts and their association with space weather events during the ascending phase of solar cycle 25 低频太阳射电II型爆发及其与太阳周期25上升阶段空间天气事件的联系
IF 1.9 4区 地球科学
Annales Geophysicae Pub Date : 2024-07-08 DOI: 10.5194/angeo-42-313-2024
Theogene Ndacyayisenga, Jean Uwamahoro, Jean Claude Uwamahoro, Daniel Izuikedinachi Okoh, Kantepalli Sasikumar Raja, Akeem Babatunde Rabiu, Christian Kwisanga, Christian Monstein
{"title":"Low-frequency solar radio type II bursts and their association with space weather events during the ascending phase of solar cycle 25","authors":"Theogene Ndacyayisenga, Jean Uwamahoro, Jean Claude Uwamahoro, Daniel Izuikedinachi Okoh, Kantepalli Sasikumar Raja, Akeem Babatunde Rabiu, Christian Kwisanga, Christian Monstein","doi":"10.5194/angeo-42-313-2024","DOIUrl":"https://doi.org/10.5194/angeo-42-313-2024","url":null,"abstract":"Abstract. Type II solar radio bursts are signatures of the coronal shocks and, therefore, particle acceleration events in the solar atmosphere and interplanetary space. Type II bursts can serve as a proxy to provide early warnings of incoming solar storm disturbances, such as geomagnetic storms and radiation storms, which may further lead to ionospheric effects. In this article, we report the first observation of 32 type II bursts by measuring various plasma parameters that occurred between May 2021 and December 2022 in solar cycle 25. We further evaluated their accompanying space weather events in terms of ionospheric total electron content (TEC) enhancement using the rate of TEC index (ROTI). In this study, we find that at heliocentric distance ∼1–2 R⊙, the shock and the Alfvén speeds are in the range 504–1282 and 368–826 km−1, respectively. The Alfvén Mach number is of the order of 1.2≤MA≤1.8 at the above-mentioned heliocentric distance. In addition, the measured magnetic field strength is consistent with the earlier reports and follows a single power law B(r)=6.07r-3.96G. Based on the current analysis, it is found that 19 out of 32 type II bursts are associated with immediate space weather events in terms of radio blackouts and polar cap absorption events, making them strong indications of space weather disruption. The ROTI enhancements, which indicate ionospheric irregularities, strongly correlate with GOES X-ray flares, which are associated with the type II radio bursts recorded. The diurnal variability in ROTI is proportional to the strength of the associated flare class, and the corresponding longitudinal variation is attributed to the difference in longitude. This article demonstrates that since type II bursts are connected to space weather hazards, understanding various physical parameters of type II bursts helps to predict and forecast the space weather.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141569910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The investigation of June 21 and 25, 2015 CMEs using EUHFORIA 利用 EUHFORIA 对 2015 年 6 月 21 日和 25 日的 CME 进行调查
IF 1.9 4区 地球科学
Annales Geophysicae Pub Date : 2024-07-04 DOI: 10.5194/egusphere-2024-1921
Somaiyeh Sabri, Stefaan Poedts
{"title":"The investigation of June 21 and 25, 2015 CMEs using EUHFORIA","authors":"Somaiyeh Sabri, Stefaan Poedts","doi":"10.5194/egusphere-2024-1921","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1921","url":null,"abstract":"<strong>Abstract.</strong> In this research, the EUropean Heliosphere FORecasting Information Asset (EUHFORIA) is used as a mathematical model to examine how coronal mass ejections (CMEs) move through a solar wind flow that is not consistent in all areas, taking into account three dimensions and changes over time. Magnetohydrodynamic (MHD) simulations were conducted to analyze the propagation patterns of two specific CMEs that occurred on June 21 and 25, 2015. The EUHFORIA simulations for the inner region of the heliosphere involve incorporating conditions related to CMEs and the solar wind at the boundaries. Comparative examination using data from the WIND and OMNI spacecrafts reveals that the EUHFORIA model offers a moderately precise depiction. The study highlights that interactions of CMEs play a significant role in determining their impact on Earth, highlighting that their initial speeds, while similar, are less influential. Besides, the EUHFORIA numerical model align with the findings of the GFZ German research center, this implies that EUHFORIA has also the capability to compute and potentially forecast the impact of CMEs on the Earth.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observations of ionospheric disturbances associated with the 2020 Beirut explosion by Defense Meteorological Satellite Program and ground-based ionosondes 国防气象卫星计划和地基电离层探测仪对与 2020 年贝鲁特爆炸有关的电离层扰动进行的观测
IF 1.9 4区 地球科学
Annales Geophysicae Pub Date : 2024-07-01 DOI: 10.5194/angeo-42-301-2024
Rezy Pradipta, Pei-Chen Lai
{"title":"Observations of ionospheric disturbances associated with the 2020 Beirut explosion by Defense Meteorological Satellite Program and ground-based ionosondes","authors":"Rezy Pradipta, Pei-Chen Lai","doi":"10.5194/angeo-42-301-2024","DOIUrl":"https://doi.org/10.5194/angeo-42-301-2024","url":null,"abstract":"Abstract. A major explosion that released a significant amount of energy into the atmosphere occurred in Beirut on 4 August 2020. The energy released may have reached the upper atmosphere and generated some traveling ionospheric disturbances (TIDs), which can affect radio wave propagation. In this study, we used data from the Defense Meteorological Satellite Program (DMSP) and ground-based ionosondes in the Mediterranean region to investigate the ionospheric response to this historic explosion event. Our DMSP data analysis revealed a noticeable increase in the ionospheric electron density near the Beirut area following the explosion, accompanied by some wavelike disturbances. Some characteristic TID signatures were also identified in the shape of ionogram traces at several locations in the Mediterranean. This event occurred during a period of relatively quiet geomagnetic conditions, making the observed TIDs likely to have originated from the Beirut explosion, not from other sources such as auroral activities. These observational findings demonstrate that TIDs from the Beirut explosion were able to propagate over longer distances, beyond the immediate areas of Lebanon and Israel–Palestine, reaching the Mediterranean and eastern Europe.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the relationship between the mesospheric sodium layer and the meteoric input function 关于中间层钠层与流星输入函数之间的关系
IF 1.9 4区 地球科学
Annales Geophysicae Pub Date : 2024-06-26 DOI: 10.5194/angeo-42-285-2024
Yanlin Li, Tai-Yin Huang, Julio Urbina, Fabio Vargas, Wuhu Feng
{"title":"On the relationship between the mesospheric sodium layer and the meteoric input function","authors":"Yanlin Li, Tai-Yin Huang, Julio Urbina, Fabio Vargas, Wuhu Feng","doi":"10.5194/angeo-42-285-2024","DOIUrl":"https://doi.org/10.5194/angeo-42-285-2024","url":null,"abstract":"Abstract. This study examines the relationship between the concentration of atmospheric sodium and its meteoric input function (MIF). We use the measurements from the Colorado State University (CSU) and the Andes Lidar Observatory (ALO) lidar instruments with a new numerical model that includes sodium chemistry in the mesosphere and lower-thermosphere (MLT) region. The model is based on the continuity equation to treat all sodium-bearing species and runs at a high temporal resolution. The model simulation employs data assimilation to compare the MIF inferred from the meteor radiant distribution and the MIF derived from the new sodium chemistry model. The simulation captures the seasonal variability in the sodium number density compared with lidar observations over the CSU site. However, there were discrepancies for the ALO site, which is close to the South Atlantic Anomaly (SAA) region, indicating that it is challenging for the model to capture the observed sodium over the ALO. The CSU site had significantly more lidar observations (27 930 h) than the ALO site (1872 h). The simulation revealed that the uptake of the sodium species on meteoric smoke particles was a critical factor in determining the sodium concentration in the MLT, with the sodium removal rate by uptake found to be approximately 3 times that of the NaHCO3 dimerization. Overall, the study's findings provide valuable information on the correlation between the MIF and the sodium concentration in the MLT region, contributing to a better understanding of the complex dynamics of this region. This knowledge can inform future research and guide the development of more accurate models to enhance our comprehension of the MLT region's behavior.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observations of traveling ionospheric disturbances driven by gravity waves from sources in the upper and lower atmosphere 观测由来自大气层上层和下层的重力波驱动的电离层巡回扰动
IF 1.9 4区 地球科学
Annales Geophysicae Pub Date : 2024-06-17 DOI: 10.5194/angeo-2024-6
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, James M. Weygand
{"title":"Observations of traveling ionospheric disturbances driven by gravity waves from sources in the upper and lower atmosphere","authors":"Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, James M. Weygand","doi":"10.5194/angeo-2024-6","DOIUrl":"https://doi.org/10.5194/angeo-2024-6","url":null,"abstract":"<strong>Abstract.</strong> Traveling ionospheric disturbances (TIDs) are observed by the Super Dual Auroral Radar Network (SuperDARN), the Poker Flat Incoherent Scatter Radar (PFISR), the multipoint and multifrequency continuous Doppler sounders, and the GNSS total electron content (TEC) mapping technique. PFISR measures electron density altitude profiles, from which TIDs are obtained by a filtering method to remove background densities. SuperDARN observes the ionospheric convection at high latitudes and TIDs modulating the ground scatter power. The Doppler sounders at mid latitudes can determine TID propagation velocities and azimuths. The aim of this study is to attribute the observed TIDs to atmospheric gravity waves generated in the lower thermosphere at high latitudes, or gravity waves generated by mid-latitude tropospheric weather systems. The solar wind-magnetosphere-ionosphere-thermosphere coupling modulates the dayside ionospheric convection and currents that generate gravity waves driving equatorward propagating medium to large scale TIDs. The horizontal equivalent ionospheric currents are estimated from the ground-based magnetometer data using an inversion technique. At high latitudes, TIDs observed in the detrended TEC maps are dominated by equatorward TIDs pointing to auroral sources. At mid to low latitudes, the azimuths of TIDs vary, indicating sources in the troposphere. The cases of eastward to southeastward propagating TIDs that are observed in the detrended TEC maps and by the HF Doppler sounders in Czechia are attributed to gravity waves that were likely generated by geostrophic adjustment processes and shear instability in the intensifying low-pressure systems.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scale size estimation and flow pattern recognition around a magnetosheath jet 磁鞘射流周围的规模估计和流动模式识别
IF 1.9 4区 地球科学
Annales Geophysicae Pub Date : 2024-06-13 DOI: 10.5194/angeo-42-271-2024
Adrian Pöppelwerth, Georg Glebe, J. Mieth, F. Koller, T. Karlsson, Z. Vörös, Ferdinand Plaschke
{"title":"Scale size estimation and flow pattern recognition around a magnetosheath jet","authors":"Adrian Pöppelwerth, Georg Glebe, J. Mieth, F. Koller, T. Karlsson, Z. Vörös, Ferdinand Plaschke","doi":"10.5194/angeo-42-271-2024","DOIUrl":"https://doi.org/10.5194/angeo-42-271-2024","url":null,"abstract":"Abstract. Transient enhancements in the dynamic pressure, so-called magnetosheath jets or simply jets, are abundantly found in the magnetosheath. They travel from the bow shock through the magnetosheath towards the magnetopause. On their way through the magnetosheath, jets disturb the ambient plasma. Multiple studies already investigated their scale size perpendicular to their propagation direction, and almost exclusively in a statistical manner. In this paper, we use multi-point measurements from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission to study the passage of a single jet. The method described here allows us to estimate the spatial distribution of the dynamic pressure within the jet. Furthermore, the size perpendicular to the propagation direction can be estimated for different cross sections. In the jet event investigated here, both the dynamic pressure and the perpendicular size increase along the propagation axis from the front part towards the center of the jet and decrease again towards the rear part, but neither monotonically nor symmetrically. We obtain a maximum diameter in the perpendicular direction of about 1 RE and a dynamic pressure of about 6 nPa at the jet center.\u0000","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141349492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atmospheric odd nitrogen response to electron forcing from a 6D magnetospheric hybrid-kinetic simulation 6D 磁层混合动力模拟得出的大气奇氮对电子强迫的响应
IF 1.9 4区 地球科学
Annales Geophysicae Pub Date : 2024-06-12 DOI: 10.5194/angeo-2024-7
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, Minna Palmroth
{"title":"Atmospheric odd nitrogen response to electron forcing from a 6D magnetospheric hybrid-kinetic simulation","authors":"Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, Minna Palmroth","doi":"10.5194/angeo-2024-7","DOIUrl":"https://doi.org/10.5194/angeo-2024-7","url":null,"abstract":"<strong>Abstract.</strong> Modelling the distribution of odd nitrogen (NO<sub>x</sub>) in the polar middle and upper atmosphere has proven to be a complex task. Firstly, its production by energetic electron precipitation is highly variable on hourly time scales. Secondly, there are uncertainties in the measurement-based but simplified electron flux data sets that are currently used in atmosphere and climate models. The altitude distribution of NO<sub>x</sub> is strongly affected by atmospheric dynamics also on monthly time scales, particularly in the polar winter periods when the isolated air inside the polar vortex descends from lower thermosphere to mesosphere and stratosphere. Recent comparisons between measurements and simulations have revealed strong differences in the NO<sub>x</sub> distribution, with questions remaining about the representation of both production and transport in models. Here we present for the first time a novel approach, where the electron atmospheric forcing in the auroral energy range (50 eV–50 keV) is derived from a magnetospheric hybrid-kinetic simulation with a detailed description of energy range and resolution, and spatial and diurnal distribution. These electron data are used as input in a global whole atmosphere model to study the impact on polar NO<sub>x</sub> and ozone. We will show that the magnetospheric electron data provides a realistic representation of the forcing which leads to considerable impact in the lower thermosphere, mesosphere and stratosphere. We find that during the polar winter the simulated auroral electron precipitation increases the polar NO<sub>x</sub> concentrations up to 200 %, 50 %, and 7 % in the lower thermosphere, mesosphere, and upper stratosphere, respectively, when compared to no auroral electron forcing in the atmospheric model. These results demonstrate the potential of combining magnetospheric and atmospheric simulations for detailed studies of solar wind – atmosphere coupling.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the importance of middle-atmosphere observations on ionospheric dynamics using WACCM-X and SAMI3 利用 WACCM-X 和 SAMI3 论中间层观测对电离层动力学的重要性
IF 1.9 4区 地球科学
Annales Geophysicae Pub Date : 2024-06-10 DOI: 10.5194/angeo-42-255-2024
Fabrizio Sassi, A. Burrell, S. McDonald, J. Tate, John P. McCormack
{"title":"On the importance of middle-atmosphere observations on ionospheric dynamics using WACCM-X and SAMI3","authors":"Fabrizio Sassi, A. Burrell, S. McDonald, J. Tate, John P. McCormack","doi":"10.5194/angeo-42-255-2024","DOIUrl":"https://doi.org/10.5194/angeo-42-255-2024","url":null,"abstract":"Abstract. Recent advances in atmospheric observations and modeling have enabled the investigation of thermosphere–ionosphere interactions as a whole-atmosphere problem. This study examines how dynamical variability in the middle atmosphere (MA) affects intra-day changes in the thermosphere and ionosphere. Specifically, this study investigates ionosphere–thermosphere interactions during different time periods of January 2013 using the Specified Dynamics Whole Atmosphere Community Climate Model, eXtended version (SD-WACCM-X), coupled to the Naval Research Laboratory (NRL) ionosphere of the Sami3 is Another Model of the Ionosphere (SAMI3) model. To represent the weather of the day, the coupled thermosphere–ionosphere system is nudged below 90 km toward the atmospheric specifications provided by the Navy Global Environmental Model for High-Altitude (NAVGEM-HA). Hindcast simulations during January 2013 are carried out with the full dataset of observations normally assimilated by NAVGEM-HA and with a degraded dataset where observations above 40 km are not assimilated. Ionospheric regions with statistically significant changes are identified using key ionospheric properties, including the electron density, peak electron density, and height of the peak electron density. Ionospheric changes show a spatial structure that illustrates the impact of two different types of coupling between the thermosphere and the ionosphere: variability induced by wind-dynamo coupling through electric conductivity and ion-neutral interactions in the upper thermosphere. The two simulations presented in this study show that changing the state of the MA affects ionosphere–thermosphere coupling through changes in the behavior and amplitude of non-migrating tides, resulting in improved key ionospheric specifications.\u0000","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141365972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信