Emilia K. J. Kilpua, Simon Good, Matti Ala-Lahti, Adnane Osmane, Venla Koikkalainen
{"title":"Permutation entropy and complexity analysis of large-scale solar wind structures and streams","authors":"Emilia K. J. Kilpua, Simon Good, Matti Ala-Lahti, Adnane Osmane, Venla Koikkalainen","doi":"10.5194/angeo-42-163-2024","DOIUrl":"https://doi.org/10.5194/angeo-42-163-2024","url":null,"abstract":"Abstract. In this work, we perform a statistical study of magnetic field fluctuations in the solar wind at 1 au using permutation entropy and complexity analysis and the investigation of the temporal variations of the Hurst exponents. Slow and fast wind, magnetic clouds, interplanetary coronal mass ejection (ICME)-driven sheath regions, and slow–fast stream interaction regions (SIRs) have been investigated separately. Our key finding is that there are significant differences in permutation entropy and complexity values between the solar wind types at larger timescales and little difference at small timescales. Differences become more distinct with increasing timescales, suggesting that smaller-scale turbulent features are more universal. At larger timescales, the analysis method can be used to identify localised spatial structures. We found that, except in magnetic clouds, fluctuations are largely anti-persistent and that the Hurst exponents, in particular in compressive structures (sheaths and SIRs), exhibit a clear locality. Our results shows that, in all cases apart from magnetic clouds at the largest scales, solar wind fluctuations are stochastic, with the fast wind having the highest entropies and low complexities. Magnetic clouds, in turn, exhibit the lowest entropy and highest complexity, consistent with them being coherent structures in which the magnetic field components vary in an ordered manner. SIRs, slow wind and ICME sheaths are intermediate in relation to magnetic clouds and fast wind, reflecting the increasingly ordered structure. Our results also indicate that permutation entropy–complexity analysis is a useful tool for characterising the solar wind and investigating the nature of its fluctuations.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"13 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quadratic Magnetic Gradients from 7-SC and 9-SC Constellations","authors":"Chao Shen, Gang Zeng, Rungployphan Kieokaew","doi":"10.5194/egusphere-2024-1330","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1330","url":null,"abstract":"<strong>Abstract.</strong> To reveal the dynamics of magnetised plasma, it is essential to know the geometrical structure of the magnetic field, which is closely related to its linear and quadratic gradients. Estimation of the linear magnetic gradient requires at least four magnetic measurements, whereas calculation of the quadratic gradients of the magnetic field generally requires at least ten. This study is therefore aimed at yielding linear and quadratic gradients of the magnetic field based on magnetic measurements from nine-spacecraft HelioSwarm or seven-spacecraft Plasma Observatory constellations. Time-series magnetic measurements and transfer relationships between different reference frames were used to yield the apparent velocity of the magnetic structure as well as the components of the quadratic magnetic gradient along the direction of motion, while simultaneously elucidating the linear gradient and remaining components of the quadratic magnetic gradient using the least-squares method. Calculation via several iterations was applied to achieve satisfactory accuracy. The tests for the situations of magnetic flux ropes and dipole magnetic field have verifies the validity and accuracy of this approach. The results suggest that using time-series magnetic measurements from constellations comprising at least seven spacecraft and nonplanar configurations can yield linear and quadratic gradients of the magnetic field.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"3 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simultaneous OI 630 nm imaging observations of thermospheric gravity waves and associated revival of fossil depletions around midnight near the equatorial ionization anomaly (EIA) crest","authors":"Navin Parihar, Saranya Padincharapad, Anand Kumar Singh, Prasanna Mahavarkar, Ashok Priyadarshan Dimri","doi":"10.5194/angeo-42-131-2024","DOIUrl":"https://doi.org/10.5194/angeo-42-131-2024","url":null,"abstract":"Abstract. We report F-region airglow imaging of fossil plasma depletions around midnight that revived afresh under persisting thermospheric gravity wave (GW) activity. An all-sky imager recorded these events in OI 630 nm imaging over Ranchi (23.3° N, 85.3° E; mlat. ∼19° N), India, on 16 April 2012. Northward-propagating and east–west-aligned GWs (λ∼210 km, v∼64 m s−1, and τ∼0.91 h) were seen around midnight. Persisting for ∼2 h, this GW activity revived two co-existing and eastward-drifting fossil depletions, DP1 and DP2. GW-driven revival was prominently seen in depletion DP1, wherein its apex height grew from ∼600 to >800 km, and the level of intensity depletion increased from ∼17 % to 50 %. The present study is novel in the sense that simultaneous observations of thermospheric GW activity and the associated evolution of depletion in OI 630 nm airglow imaging, as well as that around local midnight, have not been reported earlier. The current understanding is that GW phase fronts aligned parallel to the geomagnetic field lines and eastward-propagating are more effective in seeding Rayleigh–Taylor (RT) instability. Here, GW fronts were east–west-aligned (i.e., perpendicular to the geomagnetic field lines) and propagated northward, yet they revived fossil depletions.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"19 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140882507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acoustic–gravity waves and their role in ionosphere–lower thermosphere coupling","authors":"Gordana Jovanovic","doi":"10.5194/angeo-2024-4","DOIUrl":"https://doi.org/10.5194/angeo-2024-4","url":null,"abstract":"<strong>Abstract.</strong> The properties of acoustic–gravity waves (AGWs) in the ionospheric D layer and their role in the D layer–lower thermosphere coupling are studied using the dispersion equation and the reflection coefficient. These analytical equations are an elegant tool for evaluating the contribution of upward–propagating acoustic and gravity waves to the dynamics of the lower thermosphere. It was found that infrasound waves with frequencies ω > 0.035 <em>s</em><sup>−1</sup>, which propagate almost vertically, can reach the lower thermosphere. Also, gravity waves with frequencies lower than ω < 0.0087 <em>s</em><sup>−1</sup>, with horizontal phase velocities in the range 159 <em>m</em>/<em>s</em> < <em>v<sub>h</sub></em> < 222 <em>m</em>/<em>s</em>, and horizontal wavelength 115 km < λ<sub><em>p</em></sub> < 161 km, are important for the lower thermosphere dynamics. These waves can cause temperature rise in the lower thermosphere and have the potential to generate middle–scale traveling ionospheric disturbances (TIDs). The reflection coefficient for AGWs is highly temperature dependent. During maximum solar activity, the temperature of the lower thermosphere can rise several times. This is the situation where infrasound waves become a prime candidate for the ionospheric D layer–lower thermosphere coupling, since strongly reflected gravity waves remain trapped in the D layer. Knowing the temperatures of the particular atmospheric layers, we can also know the characteristics of AGWs and vice versa.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"18 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140832248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of solar cycle on the non-linearity of the relationship between the solar wind parameters and geomagnetic conditions","authors":"Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, Milla Kalliokoski","doi":"10.5194/angeo-2024-3","DOIUrl":"https://doi.org/10.5194/angeo-2024-3","url":null,"abstract":"<strong>Abstract.</strong> Solar wind and its transients drive the dynamics of Earth’s magnetosphere. Interplanetary coronal mass ejections (ICMEs) induce the largest variations in the near-Earth space, but significant geomagnetic activity can also be driven by high-speed streams (HSSs) and stream interaction regions (SIRs). Solar wind – magnetosphere interaction may lead to fluctuations in the inner magnetosphere and, hence, impact the electrons in the outer radiation belt. In this study, we use mutual information from information theory to study the change in the statistical dependence between solar wind parameters and inner magnetospheric indices including ultra low frequency (ULF) waves in the Pc5 range and electrons in the outer radiation belt during solar cycle 23 (1998–2008). Unlike Pearson correlation coefficient, mutual information can be used to investigate non-linear statistical dependencies between different parameters. We calculate linear and non-linear correlation coefficients separately for each year during solar cycle 23 and define the non-linearity with the ratio between the linear and non-linear correlation coefficients. We find that the non-linearity between solar wind speed and electron flux index is higher during solar maximum when most of the geomagnetic activity is driven by ICMEs, while the non-linearity decreases during the declining phase, when a larger portion of the geomagnetic activity is driven by HSSs and SIRs. On the other hand, IMF <em>B<sub>z</sub></em> and solar wind electric field <em>E</em><sub><em>y</em> </sub>= <em>V<sub>sw</sub>B<sub>z</sub></em> have smaller non-linearity with the geomagnetic indices during time periods of stronger geomagnetic activity. To investigate further if the change of the ratio of ICMEs and SIRs/HSSs as the driver of geomagnetic activity is the possible cause of the changes in the non-linearity during the solar cycle, we calculate the correlation coefficients separately during ICMEs, HSSs/SIRs and quiet solar wind. We find that non-linearity for solar wind speed and inner magnetospheric electron flux and ULF wave indices is smallest and correlations (both linear and non-linear) highest and therefore, the non-linearity is the lowest during the quiet time, while other studied solar wind parameters correlate better either during HSSs or ICMEs. These results show that the selected time period (phase of the solar cycle, dominant driver of the geomagnetic activity during the selected time) for the correlation analysis can significantly impact the results. Results also indicate that during ICMEs the solar wind – magnetosphere coupling becomes more non-linear for the majority of the studied solar wind–magnetospheric index parameter pairs (velocity, density, dynamic pressure) but IMF <em>B<sub>z</sub></em> and solar wind electric field <em>E</em><sub><em>y</em> </sub>= <em>V<sub>sw</sub>B<sub>z</sub></em> have smaller non-linearity during time periods of stronger geomagnetic activity.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"25 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140799559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Substorm Signatures in the Dayside Magnetosphere","authors":"Sanjay Kumar, Tuija I. Pulkkinen","doi":"10.5194/egusphere-2024-1113","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1113","url":null,"abstract":"<strong>Abstract.</strong> We investigate variations in the position of the magnetopause in response to the interplanetary magnetic field (IMF), and different phases of magnetospheric substorms. The average location of magnetopause is examined using magnetic field observations from multiple satellites (THEMIS, RBSP, and MMS), and the Shue model utilizing OMNI solar wind data for a period of five years from 2016–2020. We estimate average position of the magnetopause using Shue model through superposed epoch analysis of standoff distance and tail flaring angle at different substorm timings (onset, peak and end) and from in-situ measurements through 2D equatorial maps of average Δ <em>B<sub>Z</sub></em> under IMF |<em>B<sub>z</sub></em>|> 0 conditions. Our findings reveal the occurrence of substorms during both northward and southward IMF orientations and highlight an earthward movement of the magnetopause during substorm onset and peak, followed by a relaxation during the substorm end time, for both northward and southward IMF orientations. Notably, the magnetopause undergoes significant compression and reaches its closest point to the Earth during instances of strong southward IMF (<em>B<sub>Z</sub></em> < -5), particularly during the substorm peak. The empirical model provides accurate estimation of the magnetopause location during periods of both strong northward and southward IMF |<em>B<sub>z</sub></em>|>5, as the model curve traverses a distinct location (Δ <em>B<sub>Z </sub></em>= 0) representing the magnetopause shown in the 2D average map of Δ <em>B<sub>Z</sub></em>.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"16 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, Romain Maggiolo
{"title":"The Cluster spacecraft's view of the motion of the high-latitude magnetopause","authors":"Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, Romain Maggiolo","doi":"10.5194/egusphere-2024-1087","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1087","url":null,"abstract":"<strong>Abstract.</strong> The boundary between the interplanetary magnetic field and the terrestrial magnetic field is the magnetopause. This magnetopause is influenced by dynamic changes in the solar wind, that is different solar wind conditions lead to a change in the shape and location of the magnetopause. The interaction between the solar wind and the magnetosphere can be studied from in-situ spacecraft observations. Many studies focus on the equatorial plane, as this is where recent spacecraft constellations such as THEMIS or MMS operate. However, to fully capture the interaction, it is important to study the high latitude regions as well. The Cluster spacecraft allow us to collect a dataset of high-latitude magnetopause crossings and study magnetopause motion in this region, as well as deviations from established magnetopause models. We use multi-spacecraft analysis tools to investigate the direction of magnetopause motion in the high latitudes and compare the occurrence of crossings at different locations with the result in the equatorial plane. We find that the high-latitude magnetopause motion is generally consistent with previously reported values and seems to be more often associated with a closed magnetopause boundary. We show that on average the magnetopause moves faster inwards than outwards. Furthermore, the occurrence of magnetopause positions beyond those predicted by the Shue et al. (1998) model at high latitudes is found to be caused by the similar solar wind parameters as in the equatorial plane. Finally, we highlight the importance of the dipole tilt angle at high latitudes. Our results may be useful for the interpretation of plasma measurements from the upcoming SMILE mission (Branduardi-Raymont et al., 2018), as this spacecraft will also fly frequently through the high-latitude magnetopause.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"100 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep temporal convolutional networks for F10.7 radiation flux short-term forecasting","authors":"Luyao Wang, Hua Zhang, Xiaoxin Zhang, Guangshuai Peng, Zheng Li, Xiaojun Xu","doi":"10.5194/angeo-42-91-2024","DOIUrl":"https://doi.org/10.5194/angeo-42-91-2024","url":null,"abstract":"Abstract. F10.7, the solar flux at a wavelength of 10.7 cm (F10.7), is often used as an important parameter input in various space weather models and is also a key parameter for measuring the strength of solar activity levels. Therefore, it is valuable to study and forecast F10.7. In this paper, the temporal convolutional network (TCN) approach in deep learning is used to predict the daily value of F10.7. The F10.7 series from 1957 to 2019 are used. The data during 1957–1995 are adopted as the training dataset, the data during 1996–2008 (solar cycle 23) are adopted as the validation dataset, and the data during 2009–2019 (solar cycle 24) are adopted as the test dataset. The leave-one-out method is used to group the dataset for multiple validations. The prediction results for 1–3 d ahead during solar cycle 24 have a high correlation coefficient (R) of 0.98 and a root mean square error (RMSE) of only 5.04–5.18 sfu. The overall accuracy of the TCN forecasts is better than the autoregressive (AR) model (it only takes past values of the F10.7 index as inputs) and the results of the US Space Weather Prediction Center (SWPC) forecasts, especially for 2 and 3 d ahead. In addition, the TCN model is slightly better than other neural network models like the backpropagation (BP) neural network and long short-term memory (LSTM) network in terms of the solar radiation flux F10.7 forecast. The TCN model predicted F10.7 with a lower root mean square error, a higher correlation coefficient, and a better overall model prediction.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"32 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer Hatch, Karl M. Laundal
{"title":"Interferometric Imaging with EISCAT_3D for Fine-Scale In-Beam Incoherent Scatter Spectra Measurements","authors":"Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer Hatch, Karl M. Laundal","doi":"10.5194/egusphere-2024-802","DOIUrl":"https://doi.org/10.5194/egusphere-2024-802","url":null,"abstract":"<strong>Abstract.</strong> The 233 MHz EISCAT_3D radar system currently under construction in northern Fennoscandia will be able to resolve ionospheric structures smaller than the transmit beam dimensions through the use of interferometric imaging. This capability is made possible by the modular design and digitisation of the 119 91-antenna panels located at the main Skibotn site. The main array consists of a cluster of 109 panels, with 10 outlier panels producing unique interferometry baselines. In the present study synthesized incoherent scatter radar signal measurements are used for interferometric imaging analysis with the EISCAT_3D system. The Geospace Environment Model of Ion-Neutral Interactions (GEMINI) model is used to simulate a Kelvin-Helmholtz instability in the cusp region at 50 m resolution to obtain plasma parameters which are then used to generate the synthetic data. The ionospheric data is forward propagated to the EISCAT_3D array, noise is added to the synthetic data, and then an inversion of the data is performed to reconstruct the incoherent scatter spectra at relatively fine scales. By using Singular Value Decomposition (SVD) with Tikhonov regularization it is possible to pre-calculate the inversion matrix for a given range and look direction, with the regularization value scaled based on the SNR. The pre-calculation of the inversion matrix can reduce computational overhead in the imaging solution. This study provides a framework for data processing of ion-line incoherent scatter radar spectra to be imaged on fine-scales. Furthermore, with more development it can be used to test experimental set-ups and to design experiments for EISCAT_3D by investigating the needed integration time for various signal-to-noise ratios, beam patterns and ionospheric conditions.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"179 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Izabela Pawlak, Anna Odzimek, Daniel Kępski, Jose Tacza
{"title":"Analysis of diurnal, seasonal and annual variations of fair weather atmospheric potential gradient at reduced number concentration of condensation nuclei from long-term measurements at Świder, Poland","authors":"Izabela Pawlak, Anna Odzimek, Daniel Kępski, Jose Tacza","doi":"10.5194/angeo-2024-1","DOIUrl":"https://doi.org/10.5194/angeo-2024-1","url":null,"abstract":"<strong>Abstract.</strong> The ground-level atmospheric potential gradient (PG) has been measured with a radioactive collector method in Stanisław Kalinowski Geophysical Observatory in Świder (52.12° N, 21.23° E), Poland, for several decades. Long-term measurements analysed previously revealed rather typical behaviour in the diurnal and seasonal variations of the PG of a land station controlled by pollution. Observation of the potential gradient at such a station usually show a maximum at local winter months which are mostly affected by anthropogenic pollution. The 1965–2005 series has been newly analysed to describe the Świder PG variations in greater detail, also in connection with an analysis of simultaneous measurements of condensation nuclei measured at 6, 12, 18 UT. An attempt is made to calculate the diurnal and seasonal variations at condensation nuclei number concentrations below 10000 cm<sup>-3</sup>. There is a decrease of the PG in the diurnal variation by up to 11 % in the winter, and no significant change in the summer. The reduction in the annual variation is 11–26 % with the biggest difference in February. In the summer months, this difference is negligible. Such differences can be predicted with a simplified model of electrical conductivity including the aerosol composition of water soluble and soot particles, the main components of continental aerosol. With this model we obtained changes in the conductivity and the PG in up to 30 % in the winter, and 6 % in the summer. Despite the efforts to minimise the aerosol effect on the PG, the character of the PG seasonal and annual variation preserves its character with a maximum in the Northern Hemisphere winter and the minimum in the summer.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"61 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140069886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}