Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer Hatch, Karl M. Laundal
{"title":"利用 EISCAT_3D 进行干涉成像,以测量细尺度光束内不相干散射光谱","authors":"Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer Hatch, Karl M. Laundal","doi":"10.5194/egusphere-2024-802","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The 233 MHz EISCAT_3D radar system currently under construction in northern Fennoscandia will be able to resolve ionospheric structures smaller than the transmit beam dimensions through the use of interferometric imaging. This capability is made possible by the modular design and digitisation of the 119 91-antenna panels located at the main Skibotn site. The main array consists of a cluster of 109 panels, with 10 outlier panels producing unique interferometry baselines. In the present study synthesized incoherent scatter radar signal measurements are used for interferometric imaging analysis with the EISCAT_3D system. The Geospace Environment Model of Ion-Neutral Interactions (GEMINI) model is used to simulate a Kelvin-Helmholtz instability in the cusp region at 50 m resolution to obtain plasma parameters which are then used to generate the synthetic data. The ionospheric data is forward propagated to the EISCAT_3D array, noise is added to the synthetic data, and then an inversion of the data is performed to reconstruct the incoherent scatter spectra at relatively fine scales. By using Singular Value Decomposition (SVD) with Tikhonov regularization it is possible to pre-calculate the inversion matrix for a given range and look direction, with the regularization value scaled based on the SNR. The pre-calculation of the inversion matrix can reduce computational overhead in the imaging solution. This study provides a framework for data processing of ion-line incoherent scatter radar spectra to be imaged on fine-scales. Furthermore, with more development it can be used to test experimental set-ups and to design experiments for EISCAT_3D by investigating the needed integration time for various signal-to-noise ratios, beam patterns and ionospheric conditions.","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":"179 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interferometric Imaging with EISCAT_3D for Fine-Scale In-Beam Incoherent Scatter Spectra Measurements\",\"authors\":\"Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer Hatch, Karl M. Laundal\",\"doi\":\"10.5194/egusphere-2024-802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> The 233 MHz EISCAT_3D radar system currently under construction in northern Fennoscandia will be able to resolve ionospheric structures smaller than the transmit beam dimensions through the use of interferometric imaging. This capability is made possible by the modular design and digitisation of the 119 91-antenna panels located at the main Skibotn site. The main array consists of a cluster of 109 panels, with 10 outlier panels producing unique interferometry baselines. In the present study synthesized incoherent scatter radar signal measurements are used for interferometric imaging analysis with the EISCAT_3D system. The Geospace Environment Model of Ion-Neutral Interactions (GEMINI) model is used to simulate a Kelvin-Helmholtz instability in the cusp region at 50 m resolution to obtain plasma parameters which are then used to generate the synthetic data. The ionospheric data is forward propagated to the EISCAT_3D array, noise is added to the synthetic data, and then an inversion of the data is performed to reconstruct the incoherent scatter spectra at relatively fine scales. By using Singular Value Decomposition (SVD) with Tikhonov regularization it is possible to pre-calculate the inversion matrix for a given range and look direction, with the regularization value scaled based on the SNR. The pre-calculation of the inversion matrix can reduce computational overhead in the imaging solution. This study provides a framework for data processing of ion-line incoherent scatter radar spectra to be imaged on fine-scales. Furthermore, with more development it can be used to test experimental set-ups and to design experiments for EISCAT_3D by investigating the needed integration time for various signal-to-noise ratios, beam patterns and ionospheric conditions.\",\"PeriodicalId\":50777,\"journal\":{\"name\":\"Annales Geophysicae\",\"volume\":\"179 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Geophysicae\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-802\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Geophysicae","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-802","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Interferometric Imaging with EISCAT_3D for Fine-Scale In-Beam Incoherent Scatter Spectra Measurements
Abstract. The 233 MHz EISCAT_3D radar system currently under construction in northern Fennoscandia will be able to resolve ionospheric structures smaller than the transmit beam dimensions through the use of interferometric imaging. This capability is made possible by the modular design and digitisation of the 119 91-antenna panels located at the main Skibotn site. The main array consists of a cluster of 109 panels, with 10 outlier panels producing unique interferometry baselines. In the present study synthesized incoherent scatter radar signal measurements are used for interferometric imaging analysis with the EISCAT_3D system. The Geospace Environment Model of Ion-Neutral Interactions (GEMINI) model is used to simulate a Kelvin-Helmholtz instability in the cusp region at 50 m resolution to obtain plasma parameters which are then used to generate the synthetic data. The ionospheric data is forward propagated to the EISCAT_3D array, noise is added to the synthetic data, and then an inversion of the data is performed to reconstruct the incoherent scatter spectra at relatively fine scales. By using Singular Value Decomposition (SVD) with Tikhonov regularization it is possible to pre-calculate the inversion matrix for a given range and look direction, with the regularization value scaled based on the SNR. The pre-calculation of the inversion matrix can reduce computational overhead in the imaging solution. This study provides a framework for data processing of ion-line incoherent scatter radar spectra to be imaged on fine-scales. Furthermore, with more development it can be used to test experimental set-ups and to design experiments for EISCAT_3D by investigating the needed integration time for various signal-to-noise ratios, beam patterns and ionospheric conditions.
期刊介绍:
Annales Geophysicae (ANGEO) is a not-for-profit international multi- and inter-disciplinary scientific open-access journal in the field of solar–terrestrial and planetary sciences. ANGEO publishes original articles and short communications (letters) on research of the Sun–Earth system, including the science of space weather, solar–terrestrial plasma physics, the Earth''s ionosphere and atmosphere, the magnetosphere, and the study of planets and planetary systems, the interaction between the different spheres of a planet, and the interaction across the planetary system. Topics range from space weathering, planetary magnetic field, and planetary interior and surface dynamics to the formation and evolution of planetary systems.