Annual Reviews in Control最新文献

筛选
英文 中文
A survey on convex optimization for guidance and control of vehicular systems 车辆系统制导和控制的凸优化研究
IF 9.4 2区 计算机科学
Annual Reviews in Control Pub Date : 2024-01-01 DOI: 10.1016/j.arcontrol.2024.100957
Zhenbo Wang
{"title":"A survey on convex optimization for guidance and control of vehicular systems","authors":"Zhenbo Wang","doi":"10.1016/j.arcontrol.2024.100957","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2024.100957","url":null,"abstract":"<div><p>Guidance and control (G&amp;C) technologies play a central role in the development and operation of vehicular systems. The emergence of computational guidance and control (CG&amp;C) and highly efficient numerical algorithms has opened up the great potential for solving complex constrained G&amp;C problems onboard, enabling higher level of autonomous vehicle operations. In particular, convex-optimization-based G&amp;C has matured significantly over the years and many advances continue to be made, allowing the generation of optimal G&amp;C solutions in real-time for many vehicular systems in aerospace, automotive, and other domains. In this paper, we review recent major advances in convex optimization and convexification techniques for G&amp;C of vehicular systems, focusing primarily on three important application fields: (1) Space vehicles for powered descent guidance, small body landing, rendezvous and proximity operations, orbital transfer, spacecraft reorientation, space robotics and manipulation, spacecraft formation flying, and station keeping; (2) Air vehicles including hypersonic/entry vehicles, missiles and projectiles, launch/ascent vehicles, and low-speed air vehicles; and (3) Motion control and powertrain control of ground vehicles. Throughout the paper, we draw figures that illustrate the basic mission concepts and objectives, introduce key equations that characterize the feature of each class of problems and approaches, and present tables that summarize similarities and distinctions among the problems, ideas, and methods. Where available, we provide comparative analyses and reveal correlations between different applications and technical approaches. Finally, we identify open challenges and issues, discuss potential opportunities, and make suggestions for future research directions.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140553908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to build a Digital Twin for operating PEM-Electrolyser system – A reference approach 如何为运行 PEM 电解槽系统构建数字孪生系统 - 一种参考方法
IF 9.4 2区 计算机科学
Annual Reviews in Control Pub Date : 2024-01-01 DOI: 10.1016/j.arcontrol.2024.100943
Domenico Monopoli , Concetta Semeraro , Mohammad Ali Abdelkareem , Abdul Hai Alami , Abdul Ghani Olabi , Michele Dassisti
{"title":"How to build a Digital Twin for operating PEM-Electrolyser system – A reference approach","authors":"Domenico Monopoli ,&nbsp;Concetta Semeraro ,&nbsp;Mohammad Ali Abdelkareem ,&nbsp;Abdul Hai Alami ,&nbsp;Abdul Ghani Olabi ,&nbsp;Michele Dassisti","doi":"10.1016/j.arcontrol.2024.100943","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2024.100943","url":null,"abstract":"<div><p>Operating electrolyzers for producing green hydrogen is a critical emerging issue because of either the broader use of hydrogen for several scopes or the short life span and efficiency of these components. Digital Twin offers a new opportunity to effectively face these problems by improving online control and providing fault detection, diagnosis, and prediction services. Since the Digital Twin is, in fact, a virtual mirror of a real system continuously updated by information received from the field, it allows it to swiftly react to small signals of departure from standard or optimal conditions. Although Digital Twins are widely applied in different fields, comprehensive guidance on developing and designing a Digital Twin in the literature is still lacking. This manuscript aims to provide a comprehensive guide on how to build the Digital Twin of a PEM-Electrolyzer. In particular, the architecture of the Digital Twin is initially presented, then all its components are analyzed, showing the steps to be performed to build a Digital Twin for operating PEM-Electrolyser system.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140052319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Control practice for robotic applications in challenging environments 挑战性环境中机器人应用的控制实践
IF 9.4 2区 计算机科学
Annual Reviews in Control Pub Date : 2024-01-01 DOI: 10.1016/j.arcontrol.2024.100956
Kaiqiang Zhang , Guido Herrmann
{"title":"Control practice for robotic applications in challenging environments","authors":"Kaiqiang Zhang ,&nbsp;Guido Herrmann","doi":"10.1016/j.arcontrol.2024.100956","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2024.100956","url":null,"abstract":"<div><p>The use of robots has exceeded the standard focus of manufacturing and production. Over the last decades, special robotic systems have been developed in various extreme environments, such as in the maintenance, repair or even decommissioning of large-scale, strategic facilities, important to any nation’s infrastructure, including power, space, mining, etc. The deployment areas for these robots, like nuclear fuel handling systems, are generally hazardous or unreachable for human beings. The control techniques therein will play an indispensable role in the overall performance of a robotic system as they need to answer enhanced requirements for performance, robustness, and long-term reliability, driven by the fundamental demand for safe operation in complex and hazardous environments. This also needs an understanding of the enhanced industrial standards and requirements for the research, development, design and use of control systems in such environments. The control systems need to be designed specifically capable of tackling different practical control challenges caused by extreme environmental factors. This special section is designed and motivated to bridge the gap between the research community and application engineers, and to help connect control theory, control applications and industrial requirements/regulations.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140309421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An offender–defender safety game 罪犯与罪犯之间的安全游戏
IF 9.4 2区 计算机科学
Annual Reviews in Control Pub Date : 2024-01-01 DOI: 10.1016/j.arcontrol.2024.100939
Miroslav Krstic
{"title":"An offender–defender safety game","authors":"Miroslav Krstic","doi":"10.1016/j.arcontrol.2024.100939","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2024.100939","url":null,"abstract":"<div><p>In this tutorial we study a safety analog of the classical zero-sum differential game with positive definite penalties on the state and the two inputs. Consider a nonlinear system affine in two inputs, which are called “offender” and “defender.” Let the inputs have the opposing objectives in relation to an infinite-time cost which, in addition to penalizing the inputs of both agents, incorporates a safety index of the system (a barrier function), with the defender aiming to maximize the system safety and the offender aiming to minimize it. If there is a pair of (offender, defender) non-Nash feedback policies of the <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>h</mi></mrow></math></span> form with a safe outcome, namely, where the defender maintains safety while the offender fails to violate safety, then there exists an inverse optimal pair of policies that attain a Nash equilibrium relative to the safety minimax objective. In the tutorial we study both deterministic and stochastic offenders. The deterministic offender applies its feedback through its deterministic input value, while the stochastic offender applies its feedback through its incremental covariance. In addition to Nash policies for a minimax offender–defender formulation, we provide feedback laws for the defender, in the scenario where the offender action is unrestricted by optimality, and where the defender ensures input-to-state safety in the deterministic and stochastic senses. This tutorial is derived from our recent article on inverse optimal safety filters, by setting the nominal control to zero and declaring the disturbance to be the offender agent.</p><p>Among several illustrative examples, one is particularly interesting and unconventional. We consider a safety game played on a unicycle vehicle between its two inputs: the angular velocity and the linear velocity, as the opposing players. We consider two scenarios. In the first, the angular velocity, acting as an offender, attempts to run the vehicle into an obstacle by steering, while the linear velocity, acting as a defender, drives the vehicle forward or in reverse to prevent the vehicle being run into the obstacle. In the second scenario, the linear velocity acts as an offender and angular velocity acts as a defender (in the deterministic case by varying the heading rate; in the stochastic case by varying the variance of a white noise driving the heading rate). A “wind” towards the obstacle advantages the offender in both scenarios. The input policies derived are optimal in the sense of their opposite objectives, under the best possible policy of the opponent, under meaningful costs on their actions. The linear velocity input prevails, whether acting in the role of a defender, in which case the collision with the obstacle is prevented, or in the role of an offender, in which case the collision with the obstacle is achieved.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367578824000087/pdfft?md5=3d4c0e415f10642f5626c050ea707e6a&pid=1-s2.0-S1367578824000087-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of digital technologies to enhance the human integration in industrial cyber–physical systems 数字技术在加强工业网络物理系统中人的融合方面的作用
IF 9.4 2区 计算机科学
Annual Reviews in Control Pub Date : 2024-01-01 DOI: 10.1016/j.arcontrol.2024.100934
Luis Piardi , Paulo Leitão , Jonas Queiroz , Joseane Pontes
{"title":"Role of digital technologies to enhance the human integration in industrial cyber–physical systems","authors":"Luis Piardi ,&nbsp;Paulo Leitão ,&nbsp;Jonas Queiroz ,&nbsp;Joseane Pontes","doi":"10.1016/j.arcontrol.2024.100934","DOIUrl":"10.1016/j.arcontrol.2024.100934","url":null,"abstract":"<div><p>In the digital transformation era, and particularly in Industry 5.0, humans play an active role in industrial cyber–physical systems (CPS) since they are the most flexible piece in such automated systems. However, their integration is not easy and constitutes a relevant challenge, presenting different requirements according to the activities they execute and the related integration levels, i.e., Human-in-the-Loop (HitL) and Human-in-the-Mesh (HitM). Besides the use of human-centric design approaches, the use of digital technologies, namely Internet of Things, Artificial Intelligence, virtual and augmented reality and collaborative robotics, can contribute to empower humans to perform their operations in a faster and more efficient manner. This paper discusses how emergent digital technologies can enhance a more symbiotic integration of humans in industrial CPS, contributing with the analysis of different aspects and concerns that must be considered to properly enable the HitL and HitM integration levels in CPS. Four experimental case studies are presented to demonstrate the feasibility of using digital technologies to enhance the human-CPS integration, covering HitL and HitM levels. Furthermore, some challenges related to the human-integration factors affected by the digital technologies in such environments are briefly discussed and pointed out as research directions.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367578824000038/pdfft?md5=b47260608c462c13e55b0a46b3ae73d0&pid=1-s2.0-S1367578824000038-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139647611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A unified framework for exponential stability analysis of irrational transfer functions in the parametric space 参数空间中无理传递函数指数稳定性分析的统一框架
IF 9.4 2区 计算机科学
Annual Reviews in Control Pub Date : 2024-01-01 DOI: 10.1016/j.arcontrol.2024.100935
Rachid Malti , Milan R. Rapaić , Vukan Turkulov
{"title":"A unified framework for exponential stability analysis of irrational transfer functions in the parametric space","authors":"Rachid Malti ,&nbsp;Milan R. Rapaić ,&nbsp;Vukan Turkulov","doi":"10.1016/j.arcontrol.2024.100935","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2024.100935","url":null,"abstract":"<div><p>This paper presents a unified framework for exponential stability analysis of linear stationary systems with irrational transfer functions in the space of an arbitrary number of unknown parameters. Systems described by irrational transfer functions may be of infinite dimension, typically having an infinite number of poles and/or zeros, rendering their stability analysis more challenging as compared to their finite-dimensional counterparts. The analysis covers a wide class of distributed parameter systems, time delayed systems, or even fractional systems. First, it is proven that, under mild hypotheses, new poles may appear to the right of a vertical axis of abscissa <span><math><mi>γ</mi></math></span> (imaginary axis, when <span><math><mrow><mi>γ</mi><mo>=</mo><mn>0</mn></mrow></math></span>) through a continuous variation of parameters only if existing poles to the left of <span><math><mi>γ</mi></math></span> cross the vertical axis. Hence, by determining parametric values for which the crossing occurs, known as stability crossing sets (SCS), the entire parametric space is separated into regions within which the number of right-half poles (including multiplicities) is invariant. Based on the aforementioned result, a constraint satisfaction problem is formulated and a robust estimation algorithm, from interval arithmetics that uses contraction and bisection, is used to solve it. Applications are provided for determining the SCS of (i) a controlled parabolic 1D partial differential equation, namely the heat equation, in finite and semi-infinite media, (ii) time-delay rational systems with distributed and retarded type delays, (iii) fractional systems, providing stability results even for incommensurate differentiation orders.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136757882400004X/pdfft?md5=135d7d57e74e884ac887a47e405e5876&pid=1-s2.0-S136757882400004X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139653943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of static and dynamic facility layout problems 全面回顾静态和动态设施布局问题
IF 7.3 2区 计算机科学
Annual Reviews in Control Pub Date : 2024-01-01 DOI: 10.1016/j.arcontrol.2024.100970
{"title":"A comprehensive review of static and dynamic facility layout problems","authors":"","doi":"10.1016/j.arcontrol.2024.100970","DOIUrl":"10.1016/j.arcontrol.2024.100970","url":null,"abstract":"<div><div>Facility layout is a critical aspect of operations management, since it affects the efficiency and effectiveness of the production process. The facility layout problem (FLP) is a combinatorial optimization problem that involves finding an optimal arrangement of machines, workstations, and material handling systems within a manufacturing facility. FLP is known to be a NP-complex problem for which numerous research studies have been published. This paper presents a survey of the most recent advancements in FLP as an attempt to deal with the current and future trends of research based on well-known papers of the last 16 years. The adopted approach in this paper is to classify FLP according to the environment type, namely, static facility layout problem (SFLP) and dynamic facility layout problem (DFLP) and to investigate the various formulations, application domains and solution methodologies for each classification. Finally, a comparison between all approaches is provided for each classification. This review provides a comprehensive overview of FLP literature and serves as a valuable resource for researchers and practitioners interested in the design and optimization of facility layouts.</div></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A real-time interactive decision-making and control framework for complex cyber-physical-human systems 复杂网络-物理-人类系统的实时互动决策和控制框架
IF 9.4 2区 计算机科学
Annual Reviews in Control Pub Date : 2024-01-01 DOI: 10.1016/j.arcontrol.2024.100938
Chen-Lian Hu, Lei Wang, Mei-Ling Chen, Cheng Pei
{"title":"A real-time interactive decision-making and control framework for complex cyber-physical-human systems","authors":"Chen-Lian Hu,&nbsp;Lei Wang,&nbsp;Mei-Ling Chen,&nbsp;Cheng Pei","doi":"10.1016/j.arcontrol.2024.100938","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2024.100938","url":null,"abstract":"<div><p>Over the past decade, the advancement of digital technology has significantly enhanced operations management in complex cyber-physical systems (CPSs), especially in the production and manufacturing sectors. In such systems, the physical and cyber spaces are generally connected through sensors, networking, and control actions. With the surge in available real-time data, automation and intelligence have become increasingly prevalent. However, full automation and sophisticated intelligence often remain challenging to achieve in real-world CPSs. Currently, many practical tasks in CPSs are best tackled through the integration of human cognitive skills with autonomous systems, highlighting the indispensable role that humans play in these settings. In this study, we present a framework for real-time decision-making and control in complex cyber-physical-human systems. The framework consists of three main modules: intelligent data processing, intelligent decision-making and control, and human-computer interaction. It is designed to provide a practical and implementable framework for supporting real-time decision-making and control in cyber-physical-human system applications. To demonstrate the applicability of the framework, we build a comprehensive decision support tool to manage several important real-time decision-making and control tasks at a container terminal. The tool is seamlessly integrated into the main operating system of the container terminal and aids decision-makers in making optimal decisions and generating appropriate control actions. The effectiveness of the tool is confirmed by observed improvements in several key operational efficiency indicators at the container terminal.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140113830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling and control of manipulators for inspection and maintenance in challenging environments: A literature review 为机械手建模和控制,以便在具有挑战性的环境中进行检查和维护:文献综述
IF 9.4 2区 计算机科学
Annual Reviews in Control Pub Date : 2024-01-01 DOI: 10.1016/j.arcontrol.2024.100949
Alessandro Pistone , Daniele Ludovico , Lorenzo De Mari Casareto Dal Verme , Sergio Leggieri , Carlo Canali , Darwin G. Caldwell
{"title":"Modelling and control of manipulators for inspection and maintenance in challenging environments: A literature review","authors":"Alessandro Pistone ,&nbsp;Daniele Ludovico ,&nbsp;Lorenzo De Mari Casareto Dal Verme ,&nbsp;Sergio Leggieri ,&nbsp;Carlo Canali ,&nbsp;Darwin G. Caldwell","doi":"10.1016/j.arcontrol.2024.100949","DOIUrl":"https://doi.org/10.1016/j.arcontrol.2024.100949","url":null,"abstract":"<div><p>Nowadays, the use of robotic systems for inspection and maintenance is gaining importance due to the number of scenarios in which robots can operate. Indeed, robotic systems provide many advantages in harsh and hostile environments, improving workers’ safety and overall efficiency. Given their ability to perform different tasks, robotic manipulators constitute a significant proportion of the possible robotic systems employed in these environments. The category of manipulators is a heterogeneous group that comprises many different types of robots: non-redundant, redundant, and hyper-redundant manipulators, the latter being subdivided into discrete-joint manipulators and continuum manipulators. Among these types of robots, hyper-redundant manipulators play a crucial role in operating in challenging environments due to their ability to perform auxiliary tasks, such as obstacle avoidance and joint limits satisfaction. Furthermore, manipulators can be made of rigid or soft mechanisms and can be mobile, operating in aerial, ground, and underwater environments. The objective of this review article is to provide a reference point for researchers interested in modelling and controlling manipulators for inspection and maintenance in challenging environments.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S136757882400018X/pdfft?md5=3f1f22153adc5bd441be695f4053d5a4&pid=1-s2.0-S136757882400018X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140141709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric adaptive control in native spaces: Finite-dimensional implementations, Part II 原生空间中的非参数自适应控制:有限维实施,第二部分
IF 7.3 2区 计算机科学
Annual Reviews in Control Pub Date : 2024-01-01 DOI: 10.1016/j.arcontrol.2024.100968
{"title":"Nonparametric adaptive control in native spaces: Finite-dimensional implementations, Part II","authors":"","doi":"10.1016/j.arcontrol.2024.100968","DOIUrl":"10.1016/j.arcontrol.2024.100968","url":null,"abstract":"<div><div>This two-part work presents a novel theory for model reference adaptive control (MRAC) of deterministic nonlinear ordinary differential equations (ODEs) that contain functional, nonparametric uncertainties that reside in a native space, also called a reproducing kernel Hilbert space (RKHS). As discussed in the first paper of this two-part work, the proposed framework relies on a limiting distributed parameter system (DPS). To allow implementations of this framework in finite dimensions, this paper shows how several techniques developed in parametric MRAC, such as the <span><math><mi>σ</mi></math></span>-modification method, the deadzone modification, adaptive error bounding methods, and projection methods, can be generalized to the proposed nonparametric setting. Some of these techniques assure uniform ultimate boundedness of the trajectory tracking error, while others guarantee its asymptotic convergence to zero. This paper introduces nonparametric metrics of performance that are cast in terms of the functional uncertainty classes in the native space. These performance metrics are relative to the best offline approximation error of the functional uncertainty. All the provided performance bounds are explicit in the dimension of the approximations of the functional uncertainty. Numerical examples show the applicability of the proposed theoretical results.</div></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信