{"title":"使用自动模型选择和初始化的高频锂离子电池阻抗识别","authors":"Omar Arahbi, Benoît Huard, Jean-Denis Gabano, Thierry Poinot","doi":"10.1016/j.arcontrol.2025.101011","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical Impedance Spectroscopy (EIS) is a useful tool for selecting a pertinent Equivalent Circuit Model (ECM) of a Lithium-ion battery. Impedance model is designed to describe low, middle and high frequency electrochemical processes involved. When considering low frequency restricted in the Warburg zone, diffusion impedance is modeled thanks to a Constant Phase Element (CPE) which behaves as a fractional integrator of order <span><math><mi>n</mi></math></span> close to 0.5. Phenomena observed in middle frequency are described using specific circuits called Zarc which consist in connecting a CPE in parallel with a resistor. Therefore, the global impedance model is characterized by non integer order operators and parameters can be estimated by a Complex Nonlinear Least Squares (CNLS) algorithm which requires a proper initialization in order to guarantee the convergence to a global optimum. The paper presents a method to analyze EIS data measurements in order to select automatically the number of middle frequency Zarc circuits required (one or two) and to initialize properly the CNLS algorithm. The method is validated using simulation data as well as experimental open source EIS data.</div></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"60 ","pages":"Article 101011"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequential lithium-ion battery impedance identification using automatic model selection and initialization\",\"authors\":\"Omar Arahbi, Benoît Huard, Jean-Denis Gabano, Thierry Poinot\",\"doi\":\"10.1016/j.arcontrol.2025.101011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrochemical Impedance Spectroscopy (EIS) is a useful tool for selecting a pertinent Equivalent Circuit Model (ECM) of a Lithium-ion battery. Impedance model is designed to describe low, middle and high frequency electrochemical processes involved. When considering low frequency restricted in the Warburg zone, diffusion impedance is modeled thanks to a Constant Phase Element (CPE) which behaves as a fractional integrator of order <span><math><mi>n</mi></math></span> close to 0.5. Phenomena observed in middle frequency are described using specific circuits called Zarc which consist in connecting a CPE in parallel with a resistor. Therefore, the global impedance model is characterized by non integer order operators and parameters can be estimated by a Complex Nonlinear Least Squares (CNLS) algorithm which requires a proper initialization in order to guarantee the convergence to a global optimum. The paper presents a method to analyze EIS data measurements in order to select automatically the number of middle frequency Zarc circuits required (one or two) and to initialize properly the CNLS algorithm. The method is validated using simulation data as well as experimental open source EIS data.</div></div>\",\"PeriodicalId\":50750,\"journal\":{\"name\":\"Annual Reviews in Control\",\"volume\":\"60 \",\"pages\":\"Article 101011\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reviews in Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367578825000264\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578825000264","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Frequential lithium-ion battery impedance identification using automatic model selection and initialization
Electrochemical Impedance Spectroscopy (EIS) is a useful tool for selecting a pertinent Equivalent Circuit Model (ECM) of a Lithium-ion battery. Impedance model is designed to describe low, middle and high frequency electrochemical processes involved. When considering low frequency restricted in the Warburg zone, diffusion impedance is modeled thanks to a Constant Phase Element (CPE) which behaves as a fractional integrator of order close to 0.5. Phenomena observed in middle frequency are described using specific circuits called Zarc which consist in connecting a CPE in parallel with a resistor. Therefore, the global impedance model is characterized by non integer order operators and parameters can be estimated by a Complex Nonlinear Least Squares (CNLS) algorithm which requires a proper initialization in order to guarantee the convergence to a global optimum. The paper presents a method to analyze EIS data measurements in order to select automatically the number of middle frequency Zarc circuits required (one or two) and to initialize properly the CNLS algorithm. The method is validated using simulation data as well as experimental open source EIS data.
期刊介绍:
The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles:
Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected.
Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and
Tutorial research Article: Fundamental guides for future studies.