Cheng-Jie Xie, Ling Yao, Rong Tang, Shuang Han, Shang Yang, Hend Alwathnani, Christopher Rensing, Guo-Hong Liu, Shun-Gui Zhou
{"title":"Azotosporobacter soli gen. nov., sp. nov., a novel nitrogen-fixing bacterium isolated from paddy soil","authors":"Cheng-Jie Xie, Ling Yao, Rong Tang, Shuang Han, Shang Yang, Hend Alwathnani, Christopher Rensing, Guo-Hong Liu, Shun-Gui Zhou","doi":"10.1007/s10482-024-01978-6","DOIUrl":"10.1007/s10482-024-01978-6","url":null,"abstract":"<div><p>A nitrogen-fixing strain designated SG130<sup>T</sup> was isolated from paddy soil in Fujian Province, China. Strain SG130<sup>T</sup> was Gram-staining-negative, rod-shaped, and strictly anaerobic. Strain SG130<sup>T</sup> showed the highest 16S rRNA gene sequence similarities with the type strains <i>Dendrosporobacter quercicolus</i> DSM 1736<sup>T</sup> (91.7%), <i>Anaeroarcus burkinensis</i> DSM 6283<sup>T</sup> (91.0%) and <i>Anaerospora hongkongensis</i> HKU 15<sup>T</sup> (90.9%). Furthermore, the phylogenetic and phylogenomic analysis also suggested strain SG130<sup>T</sup> clustered with members of the family <i>Sporomusaceae</i> and was distinguished from other genera within this family. Growth of strain SG130<sup>T</sup> was observed at 25–45 °C (optimum 30 °C), pH 6.0–9.5 (optimum 7.0) and 0–1% (w/v) NaCl (optimum 0.1%). The quinones were Q-8 and Q-9. The polar lipids were phosphatidylserine (PS), phosphatidylethanolamine (PE), glycolipid (GL), phospholipid (PL) and an unidentified lipid (UL). The major fatty acids (> 10%) were iso-C<sub>13:0</sub> 3OH (26.6%), iso-C<sub>17:1</sub> (15.6%) and iso-C<sub>15:1</sub> F (11.4%). The genomic DNA G + C content was 50.7%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG130<sup>T</sup> and the most closely related type strain <i>D</i>. <i>quercicolus</i> DSM 1736<sup>T</sup> (ANI 68.0% and dDDH 20.3%) were both below the cut-off level for species delineation. The average amino acid identity (AAI) between strain SG130<sup>T</sup> and the most closely related type strain <i>D</i>. <i>quercicolus</i> DSM 1736<sup>T</sup> was 63.2%, which was below the cut-off value for bacterial genus delineation (65%). Strain SG130<sup>T</sup> possessed core genes (<i>nifHDK</i>) involved in nitrogen fixation, and nitrogenase activity (106.38 μmol C<sub>2</sub>H<sub>4</sub> g<sup>−1</sup> protein h<sup>−1</sup>) was examined using the acetylene reduction assay. Based on the above results, strain SG130<sup>T</sup> is confirmed to represent a novel genus of the family <i>Sporomusaceae</i>, for which the name <i>Azotosporobacter soli</i> gen. nov., sp. nov. is proposed. The type strain is SG130<sup>T</sup> (= GDMCC 1.3312<sup>T</sup> = JCM 35641<sup>T</sup>).</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"117 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicole Sartori Ribeiro, Deisiane Fernanda da Rosa, Marina Amaral Xavier, Sharon Vieira dos Reis, Walter O. Beys-da-Silva, Lucélia Santi, Cristiano Valim Bizarro, Pedro Ferrari Dalberto, Luiz Augusto Basso, Alexandre José Macedo
{"title":"Unveiling antibiofilm potential: proteins from Priestia sp. targeting Staphylococcus aureus biofilm formation","authors":"Nicole Sartori Ribeiro, Deisiane Fernanda da Rosa, Marina Amaral Xavier, Sharon Vieira dos Reis, Walter O. Beys-da-Silva, Lucélia Santi, Cristiano Valim Bizarro, Pedro Ferrari Dalberto, Luiz Augusto Basso, Alexandre José Macedo","doi":"10.1007/s10482-024-01977-7","DOIUrl":"10.1007/s10482-024-01977-7","url":null,"abstract":"<div><p><i>Staphylococcus aureus</i> is the etiologic agent of many nosocomial infections, and its biofilm is frequently isolated from medical devices. Moreover, the dissemination of multidrug-resistant (MDR) strains from this pathogen, such as methicillin-resistant <i>S. aureus</i> (MRSA) strains, is a worldwide public health issue. The inhibition of biofilm formation can be used as a strategy to weaken bacterial resistance. Taking that into account, we analysed the ability of marine sponge-associated bacteria to produce antibiofilm molecules, and we found that marine <i>Priestia</i> sp., isolated from marine sponge <i>Scopalina</i> sp. collected on the Brazilian coast, secretes proteins that impair biofilm development from <i>S. aureus</i>. Partially purified proteins (PPP) secreted after 24 hours of bacterial growth promoted a 92% biofilm mass reduction and 4.0 µg/dL was the minimum concentration to significantly inhibit biofilm formation. This reduction was visually confirmed by light microscopy and Scanning Electron Microscopy (SEM). Furthermore, biochemical assays showed that the antibiofilm activity of PPP was reduced by ethylenediaminetetraacetic acid (EDTA) and 1,10 phenanthroline (PHEN), while it was stimulated by zinc ions, suggesting an active metallopeptidase in PPP. This result agrees with mass spectrometry (MS) identification, which indicated the presence of a metallopeptidase from the M28 family. Additionally, whole-genome sequencing analysis of <i>Priestia</i> sp. shows that gene <i>ywad</i>, a metallopeptidase-encoding gene, was present. Therefore, the results presented herein indicate that PPP secreted by the marine <i>Priestia</i> sp. can be explored as a potential antibiofilm agent and help to treat chronic infections.</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"117 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140917361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Endophytic species of Nigrospora from grasses and shrubs of Shadegan International Wetland, with new species and records from Iran","authors":"Atena Safi, Mehdi Mehrabi-Koushki, Mahdi Arzanlou","doi":"10.1007/s10482-024-01976-8","DOIUrl":"10.1007/s10482-024-01976-8","url":null,"abstract":"<div><p>The “Shadegan International Wetland” (SIW) is one of the wetlands internationally recognized in the Ramsar convention. The vegetation of this wetland ecosystem consists of mostly grasses and shrubs that host a large number of fungi including endophytes. In this study, <i>Nigrospora</i> isolates were obtained from healthy plants of this wetland and its surrounding salt marshes and identified based on morphological features and multilocus phylogenetic analyses based on three DNA loci, namely the internal transcribed spacer regions 1 and 2 including the intervening 5.8S nuclear ribosomal DNA (ITS), β-tubulin (<i>tub2</i>), and elongation factor 1-α (<i>tef1-α</i>). Accordingly, the following <i>Nigrospora</i> species were identified: <i>N. lacticolonia</i>, <i>N. oryzae</i>, <i>N. osmanthi</i>, <i>N. pernambucoensis</i> and a novel taxon <i>N. shadeganensis</i> sp. nov., which is described and illustrated. To the best of our knowledge, 10 new hosts for <i>Nigrospora</i> species are here reported, namely <i>Aeluropus lagopoides</i><i>, </i><i>Allenrolfea occidentalis</i><i>, </i><i>Anthoxanthum monticola</i>, <i>Arthrocnemum macrostachyum</i><i>, </i><i>Cressa cretica</i><i>, </i><i>Halocnemum strobilaceum</i><i>, </i><i>Seidlitzia rosmarinus</i><i>, </i><i>Suaeda vermiculata</i><i>, </i><i>Tamarix passerinoides,</i> and <i>Typha latifolia</i>. Moreover, the species <i>N. lacticolonia</i> and <i>N. pernambucoensis</i> are new records for the mycobiota of Iran.</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"117 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Cortés-Albayay, Mabel Delgado-Torres, Giovanni Larama, Cecilia Paredes-Negron, María de la Luz Mora, Paola Durán, Patricio Javier Barra
{"title":"Comparative genomics of plant growth promoting phosphobacteria isolated from acidic soils","authors":"Carlos Cortés-Albayay, Mabel Delgado-Torres, Giovanni Larama, Cecilia Paredes-Negron, María de la Luz Mora, Paola Durán, Patricio Javier Barra","doi":"10.1007/s10482-024-01961-1","DOIUrl":"10.1007/s10482-024-01961-1","url":null,"abstract":"<div><p>Despite being one of the most abundant elements in soil, phosphorus (P) often becomes a limiting macronutrient for plants due to its low bioavailability, primarily locked away in insoluble organic and inorganic forms. Phosphate solubilizing and mineralizing bacteria, also called phosphobacteria, isolated from P-deficient soils have emerged as a promising biofertilizer alternative, capable of converting these recalcitrant P forms into plant-available phosphates. Three such phosphobacteria strains—<i>Serratia</i> sp. RJAL6, <i>Klebsiella</i> sp. RCJ4, and <i>Enterobacter</i> sp. 198—previously demonstrated their particular strength as plant growth promoters for wheat, ryegrass, or avocado under abiotic stresses and P deficiency. Comparative genomic analysis of their draft genomes revealed several genes encoding key functionalities, including alkaline phosphatases, isonitrile secondary metabolites, enterobactin biosynthesis and genes associated to the production of indole-3-acetic acid (IAA) and gluconic acid. Moreover, overall genome relatedness indexes (OGRIs) revealed substantial divergence between <i>Serratia</i> sp. RJAL6 and its closest phylogenetic neighbours, <i>Serratia nematodiphila</i> and <i>Serratia bockelmanii</i>. This compelling evidence suggests that RJAL6 merits classification as a novel species. This in silico genomic analysis provides vital insights into the plant growth-promoting capabilities and provenance of these promising PSRB strains. Notably, it paves the way for further characterization and potential application of the newly identified <i>Serratia</i> species as a powerful bioinoculant in future agricultural settings.</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"117 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140867145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formulation of biogenic fluorescent pigmented PHB nanoparticles from Rhodanobacter sp. for drug delivery","authors":"Ksheerabdhi Tanaya, Swati Mohapatra, Deviprasad Samantaray","doi":"10.1007/s10482-024-01973-x","DOIUrl":"10.1007/s10482-024-01973-x","url":null,"abstract":"<div><p>Biogenic nanoparticles (NPs) have emerged as promising therapeutic formulations in effective drug delivery. Despite of various positive attributes, these NPs are often conjugated with various cytotoxic organic fluorophores for bioimaging, thereby reducing its effectiveness as a potential carrier. Herein, we aim to formulate biogenic fluorescent pigmented polyhydroxybutyrate (PHB) NPs from <i>Rhodanobacter</i> sp. strain KT31 (OK001852) for drug delivery. The bacterial strain produced 0.5 g L<sup>−1</sup> of polyhydroxyalkanoates (PHAs) from 2.04 g L<sup>−1</sup> of dry cell weight (DCW) under optimised conditions via submerged fermentation. Further, structural, thermal, and morphological charactersiation of the extracted PHAs was conducted using advance analytical technologies. IR spectra at 1719.25 cm<sup>−1</sup> confirmed presence of C = O functional group PHB. NMR and XRD analysis validated the chemical structure and crystallinity of PHB. TG–DTA revealed <i>Tm</i> (168 °C), <i>Td</i> (292 °C), and <i>Xc</i> (35%) of the PHB. FE-SEM imaging indicated rough surface of the PHB film and the biodegradability was confirmed from open windro composting. WST1 assay showed no significant cell death (> 50%) from 100 to 500 µg/mL, endorsing non-cytotoxic nature of PHB. PHB NPs were uniform, smooth and spherical with size distribution and mean zeta potential 44.73 nm and 0.5 mV. IR and XRD peaks obtained at 1721.75 cm<sup>−1</sup> and 48.42 Å denoted C = O and crystalline nature of PHB. Cell proliferation rate of PHB NPs was quite significant at 50 µg/mL, establishing the non-cytotoxic nature of NPs. Further, in vitro efficacy of the PHB NPs needs to be evaluated prior to the biomedical applications.</p><h3>Graphical Abstract</h3><p>Schematic diagram depicting synthesis and characterisation of fluorescent PHB NPs</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"117 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ya-Fei Zhang, Yun-Lin Peng, Yong-Hui Xiao, Bing Yu, Ming-Yue Cao, Zhi-Ling Zhang, Le-Qun Huang, Yi Li
{"title":"Jeotgalibacillus haloalkalitolerans sp. nov., a novel alkalitolerant and halotolerant bacterium, isolated from the confluence of the Fenhe River and the Yellow River","authors":"Ya-Fei Zhang, Yun-Lin Peng, Yong-Hui Xiao, Bing Yu, Ming-Yue Cao, Zhi-Ling Zhang, Le-Qun Huang, Yi Li","doi":"10.1007/s10482-024-01968-8","DOIUrl":"10.1007/s10482-024-01968-8","url":null,"abstract":"<div><p>A Gram-stain positive, aerobic, alkalitolerant and halotolerant bacterium, designated HH7-29<sup> T</sup>, was isolated from the confluence of the Fenhe River and the Yellow River in Shanxi Province, PR China. Growth occurred at pH 6.0–12.0 (optimum, pH 8.0–8.5) and 15–40℃ (optimum, 32℃) with 0.5–24% NaCl (optimum, 2–9%). The predominant fatty acids (> 10.0%) were iso-C<sub>15:0</sub> and anteiso-C<sub>15:0</sub>. The major menaquinones were MK-7 and MK-8. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain HH7-29<sup> T</sup> was a member of the genus <i>Jeotgalibacillus</i>, exhibiting high sequence similarity to the 16S rRNA gene sequences of <i>Jeotgalibacillus alkaliphilus</i> JC303<sup>T</sup> (98.4%), <i>Jeotgalibacillus salarius</i> ASL-1<sup> T</sup> (98.1%) and <i>Jeotgalibacillus alimentarius</i> YKJ-13<sup> T</sup> (98.1%). The genomic DNA G + C content was 43.0%. Gene annotation showed that strain HH7-29<sup> T</sup> had lower protein isoelectric points (pIs) and possessed genes related to ion transport and organic osmoprotectant uptake, implying its potential tolerance to salt and alkali. The average nucleotide identity, digital DNA–DNA hybridization values, amino acid identity values, and percentage of conserved proteins values between strain HH7-29<sup> T</sup> and its related species were 71.1–83.8%, 19.5–27.4%, 66.5–88.4% and 59.8–76.6%, respectively. Based on the analyses of phenotypic, chemotaxonomic, phylogenetic and genomic features, strain HH7-29<sup> T</sup> represents a novel species of the genus <i>Jeotgalibacillus</i>, for which the name <i>Jeotgalibacillus haloalkalitolerans</i> sp. nov. is proposed. The type strain is HH7-29<sup> T</sup> (= KCTC 43417<sup> T</sup> = MCCC 1K07541<sup>T</sup>).</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"117 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140828357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Wei, Wenjun Guo, Biyue Yang, Kaili Wang, Xinyu Hu, Guanya Ji, Xiangru Xu, Shenkui Liu, Lin Zhu
{"title":"Oerskovia flava sp. nov., a deoxynivalenol (DON)-degrading actinomycete isolated from the rhizosphere soil of long-term continuous cropping cucumber","authors":"Wei Wei, Wenjun Guo, Biyue Yang, Kaili Wang, Xinyu Hu, Guanya Ji, Xiangru Xu, Shenkui Liu, Lin Zhu","doi":"10.1007/s10482-024-01972-y","DOIUrl":"10.1007/s10482-024-01972-y","url":null,"abstract":"<div><p>The deoxynivalenol (DON)-degrading bacterium JB1-3-2<sup> T</sup> was isolated from a rhizosphere soil sample of cucumber collected from a greenhouse located in Zhenjiang, Eastern China. The JB1-3-2<sup> T</sup> strain is a Gram-stain-positive, nonmotile and round actinomycete. Growth was observed at temperatures between 15 and 40 ℃ (optimum, 35 ℃), in the presence of 15% (w/v) NaCl (optimum, 3%), and at pH 3 and 11 (optimum, 7). The major cellular fatty acids identified were anteiso-C<sub>15:0</sub>, iso-C<sub>16:0</sub> and anteiso-C<sub>17:0</sub>. Genome sequencing revealed a genome size of 4.11 Mb and a DNA G + C content of 72.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the JB1-3-2<sup> T</sup> strain was most closely related to type strains of the <i>Oerskovia</i> species, with the highest sequence similarity to <i>Oerskovia turbata</i> NRRL B-8019<sup> T</sup> (98.2%), and shared 98.1% sequence identity with other valid type strains of this genus. Digital DNA‒DNA hybridization (dDDH) and average nucleotide identity (ANI) showed 21.8–22.2% and 77.2–77.3% relatedness, respectively, between JB1-3-2<sup> T</sup> and type strains of the genus <i>Oerskovia</i>. Based on genotypic, phylogenetic, chemotaxonomic, physiological and biochemical characterization, <i>Oerskovia flava</i>, a novel species in the genus <i>Oerskovia,</i> was proposed, and the type strain was JB1-3-2<sup> T</sup> (= CGMCC 1.18555<sup> T</sup> = JCM 35248<sup> T</sup>). Additionally, this novel strain has a DON degradation ability that other species in the genus <i>Oerskovia</i> do not possess, and glutathione-S-transferase was speculated to be the key enzyme for strain JB1-3-2<sup> T</sup> to degrade DON.</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"117 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
U. Shamjana, Deepa Azhchath Vasu, Preety Sweta Hembrom, Karunakar Nayak, Tony Grace
{"title":"The role of insect gut microbiota in host fitness, detoxification and nutrient supplementation","authors":"U. Shamjana, Deepa Azhchath Vasu, Preety Sweta Hembrom, Karunakar Nayak, Tony Grace","doi":"10.1007/s10482-024-01970-0","DOIUrl":"10.1007/s10482-024-01970-0","url":null,"abstract":"<div><p>Insects are incredibly diverse, ubiquitous and have successfully flourished out of the dynamic and often unpredictable nature of evolutionary processes. The resident microbiome has accompanied the physical and biological adaptations that enable their continued survival and proliferation in a wide array of environments. The host insect and microbiome’s bidirectional relationship exhibits their capability to influence each other’s physiology, behavior and characteristics. Insects are reported to rely directly on the microbial community to break down complex food, adapt to nutrient-deficit environments, protect themselves from natural adversaries and control the expression of social behavior. High-throughput metagenomic approaches have enhanced the potential for determining the abundance, composition, diversity and functional activities of microbial fauna associated with insect hosts, enabling in-depth investigation into insect-microbe interactions. We undertook a review of some of the major advances in the field of metagenomics, focusing on insect-microbe interaction, diversity and composition of resident microbiota, the functional capability of endosymbionts and discussions on different symbiotic relationships. The review aims to be a valuable resource on insect gut symbiotic microbiota by providing a comprehensive understanding of how insect gut symbionts systematically perform a range of functions, viz., insecticide degradation, nutritional support and immune fitness. A thorough understanding of manipulating specific gut symbionts may aid in developing advanced insect-associated research to attain health and design strategies for pest management.</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"117 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haejin Woo, Geeta Chhetri, Inhyup Kim, Yoonseop So, Sunho Park, Yonghee Jung, Taegun Seo
{"title":"Pedobacter rhodius sp. nov. and Pedobacter punctiformis sp. nov., isolated from soil","authors":"Haejin Woo, Geeta Chhetri, Inhyup Kim, Yoonseop So, Sunho Park, Yonghee Jung, Taegun Seo","doi":"10.1007/s10482-024-01963-z","DOIUrl":"10.1007/s10482-024-01963-z","url":null,"abstract":"<div><p>Two Gram-staining negative, catalase- and oxidase-positive, pinkish-colored and rod-shaped strains, designated SJ11<sup>T</sup> and HCMS5-2<sup> T</sup>, were isolated from soil in South Korea. The growth of strain SJ11<sup>T</sup> was observed from 15℃ to 35℃ (optimum, 30℃), from pH 6.0 to 11.0 (optimum, pH 6.0–7.0) and with NaCl 0–1% (w/v) (optimum, 0%) and that of strain HCMS5-2<sup> T</sup> was observed from 4℃ to 40℃ (optimum, 25℃), from pH 6.0 to pH 8.0 (optimum, pH 7.0) and with NaCl 0–5% (w/v) (optimum, 0–1%). Phylogenetic analysis based on 16S rRNA gene sequences showed that both strains belonged to the genus <i>Pedobacter</i>. Strain SJ11<sup>T</sup> had the highest 16S rRNA similarities with <i>Pedobacter jejuensis</i> THG-DR3<sup>T</sup> (98.5%) and strain HCMS5-2<sup> T</sup> had the highest similarities with <i>Pedobacter nototheniae</i> 36B243<sup>T</sup> (98.7%). The digital DNA-DNA hybridization value of strain SJ11<sup>T</sup> with <i>Pedobacter jejuensis</i> THG-DR3<sup>T</sup> was 23.6%, with an average nucleotide identity value of 79.6%, and that of strain HCMS5-2<sup> T</sup> with <i>Pedobacter nototheniae</i> 36B243<sup>T</sup> was 26.4%, with an average nucleotide identity value of 83.1%. The predominant cellular fatty acids (> 10%) of SJ11<sup>T</sup> and HCMS5-2<sup> T</sup> were iso-C<sub>15:0</sub>, summed feature 3 (comprising C<sub>16:1</sub><i>ω</i>7<i>c</i> and/or C<sub>16:1</sub><i>ω</i>6<i>c</i>) and iso-C<sub>17:0</sub> 3-OH. The genome size of strain SJ11<sup>T</sup> was approximately 4.7 Mb with a G + C content of 37.7% and that of strain HCMS5-2<sup> T</sup> was approximately 4.1 Mb with a G + C content of 36.4%. The major polar lipid and respiratory quinone of SJ11<sup>T</sup> and HCMS5-2<sup> T</sup> were phosphatidylethanolamine and menaquinone NK-7, respectively. Results of this study showed that strains SJ11<sup>T</sup> and HCMS5-2<sup> T</sup> belonged to the genus <i>Pedobacter</i> as novel species, of which the name <i>Pedobacter rhodius</i> sp. nov., with the type strain SJ11<sup>T</sup> (= KACC 22884<sup> T</sup> = TBRC 16597<sup> T</sup>) and <i>Pedobacter punctiformis</i> sp. nov., with the type strain HCMS5-2<sup> T</sup> (= KACC 22863<sup> T</sup> = TBRC 16598<sup> T</sup>) were respectively proposed.</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"117 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel aerobic anoxygenic phototrophic bacterium Jannaschia pagri sp. nov., isolated from seawater around a fish farm","authors":"Koyo Kuwata, Yuki Sato-Takabe, Ryosuke Nakai, Yuya Sugimura, Nozomi Tazato, Tadao Kunihiro, Sho Morohoshi, Mitsunori Iwataki, Koji Hamasaki, Takuhei Shiozaki","doi":"10.1007/s10482-024-01971-z","DOIUrl":"10.1007/s10482-024-01971-z","url":null,"abstract":"<div><p>The genus <i>Jannaschia</i> is one of the representatives of aerobic anoxygenic phototrophic (AAP) bacteria, which is a strictly aerobic bacterium, producing a photosynthetic pigment bacteriochlorophyll (BChl) <i>a</i>. However, a part of the genus <i>Jannaschia</i> members have not been confirmed the photosynthetic ability. The partly presence of the ability in the genus <i>Jannaschia</i> could suggest the complexity of evolutionary history for anoxygenic photosynthesis in the genus, which is expected as gene loss and/or horizontal gene transfer. Here a novel AAP bacterium designated as strain AI_62<sup>T</sup> (= DSM 115720<sup> T</sup> = NBRC 115938<sup> T</sup>), was isolated from coastal seawater around a fish farm in the Uwa Sea, Japan. Its closest relatives were identified as <i>Jannaschia seohaensis</i> SMK-146<sup> T</sup> (95.6% identity) and <i>J. formosa</i> 12N15<sup>T</sup> (94.6% identity), which have been reported to produce BChl <i>a</i>. The genomic characteristic of strain AI_62<sup>T</sup> clearly showed the possession of the anoxygenic photosynthesis related gene sets. This could be a useful model organism to approach the evolutionary mystery of anoxygenic photosynthesis in the genus <i>Jannaschia</i>. Based on a comprehensive consideration of both phylogenetic and phenotypic characteristics, we propose the classification of a novel species within the genus <i>Jannaschia</i>, designated as <i>Jannaschia pagri</i> sp. nov. The type strain for this newly proposed species is AI_62<sup>T</sup> (= DSM 115720<sup> T</sup> = NBRC 115938<sup> T</sup>).</p></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"117 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140665624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}