{"title":"A generalized scalar auxiliary variable approach for the Navier–Stokes-ω/Navier–Stokes-ω equations based on the grad-div stabilization","authors":"Qinghui Wang, Pengzhan Huang, Yinnian He","doi":"10.1016/j.cnsns.2024.108329","DOIUrl":"10.1016/j.cnsns.2024.108329","url":null,"abstract":"<div><p>In this article, based on the grad-div stabilization, we propose a generalized scalar auxiliary variable approach for solving a fluid–fluid interaction problem governed by the Navier–Stokes-<span><math><mi>ω</mi></math></span>/Navier–Stokes-<span><math><mi>ω</mi></math></span> equations. We adopt the backward Euler scheme and mixed finite element approximation for temporal-spatial discretization, and explicit treatment for the interface terms and nonlinear terms. The proposed scheme is almost unconditionally stable and requires solving only the linear equation with constant coefficient at each time step. It can also penalize for lack of mass conservation and improve the accuracy. Finally, a series of numerical experiments are carried out to illustrate the stability and effectiveness of the proposed scheme.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005148/pdfft?md5=e84604e57d5662b451f5f456ea102ca9&pid=1-s2.0-S1007570424005148-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Explicit exponential Runge–Kutta methods for semilinear time-fractional integro-differential equations","authors":"Jun Zhou , Hao Zhang , Mengmeng Liu , Da Xu","doi":"10.1016/j.cnsns.2024.108332","DOIUrl":"10.1016/j.cnsns.2024.108332","url":null,"abstract":"<div><p>In this work, we consider and analyze explicit exponential Runge–Kutta methods for solving semilinear time-fractional integro-differential equation, which involves two nonlocal terms in time. Firstly, the temporal Runge–Kutta discretizations follow the idea of exponential integrators. Subsequently, we utilize the spectral Galerkin method to introduce a fully discrete scheme. Then, we mainly focus on discussing the one-stage and two-stage methods for solving the proposed semilinear problem. Based on special abstract settings, we perform the convergence analysis for the proposed two different stage methods. In this process, we heavily use estimates about the operator family <span><math><mrow><mo>{</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>̃</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span>, and in combination with Lipschitz continuous condition. Finally, some numerical experiments confirm theoretical results. Meanwhile, applying this scheme to the related linear problem yields high-order convergence, highlighting the advantages of explicit exponential Runge–Kutta methods.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005173/pdfft?md5=66d620e3c2a13d80a83205fe51950d69&pid=1-s2.0-S1007570424005173-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cascades of heterodimensional cycles via period doubling","authors":"Nelson Wong, Bernd Krauskopf, Hinke M. Osinga","doi":"10.1016/j.cnsns.2024.108328","DOIUrl":"10.1016/j.cnsns.2024.108328","url":null,"abstract":"<div><p>A heterodimensional cycle is formed by the intersection of stable and unstable manifolds of two saddle periodic orbits that have unstable manifolds of different dimensions: connecting orbits exist from one periodic orbit to the other, and vice versa. The difference in dimensions of the invariant manifolds can only be achieved in vector fields of dimension at least four. At least one of the connecting orbits of the heterodimensional cycle will necessarily be structurally unstable, meaning that is does not persist under small perturbations. Nevertheless, the theory states that the existence of a heterodimensional cycle is generally a <em>robust</em> phenomenon: any sufficiently close vector field (in the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-topology) also has a heterodimensional cycle.</p><p>We investigate a particular four-dimensional vector field that is known to have a heterodimensional cycle. We continue this cycle as a codimension-one invariant set in a two-parameter plane. Our investigations make extensive use of advanced numerical methods that prove to be an important tool for uncovering the dynamics and providing insight into the underlying geometric structure. We study changes in the family of connecting orbits as two parameters vary and Floquet multipliers of the periodic orbits in the heterodimensional cycle change. In particular the Floquet multipliers of one of the periodic orbits change from real positive to real negative prior to a period-doubling bifurcation. We then focus on the transitions that occur near this period-doubling bifurcation and find that it generates new families of heterodimensional cycles with different geometric properties. Our careful numerical study suggests that further two-parameter continuation of the ‘period-doubled heterodimensional cycles’ gives rise to an abundance of heterodimensional cycles of different types in the limit of a period-doubling cascade.</p><p>Our results for this particular example vector field make a contribution to the emerging bifurcation theory of heterodimensional cycles. In particular, the bifurcation scenario we present can be viewed as a specific mechanism behind so-called stabilisation of a heterodimensional cycle via the embedding of one of its constituent periodic orbits into a more complex invariant set.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005136/pdfft?md5=f38edea7a0d479894640291d3ce40bfc&pid=1-s2.0-S1007570424005136-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unconditionally maximum principle-preserving linear method for a mass-conserved Allen–Cahn model with local Lagrange multiplier","authors":"Junxiang Yang , Junseok Kim","doi":"10.1016/j.cnsns.2024.108327","DOIUrl":"10.1016/j.cnsns.2024.108327","url":null,"abstract":"<div><p>In this work, we present a conservative Allen–Cahn (CAC) equation and investigate its unconditionally maximum principle-preserving linear numerical scheme. The operator splitting strategy is adopted to split the CAC model into a conventional AC equation and a mass correction equation. The standard finite difference method is used to discretize the equations in space. In the first step, the temporal discretization of the AC equation is performed by using the energy factorization technique. The discrete version of the maximum principle-preserving property for the AC equation is unconditionally satisfied. In the second step, we apply mass correction by using an explicit Euler-type approach. Without the constraint of time step, we estimate that the absolute value of the updated solution is bounded by 1. The unique solvability is analytically proved. In each time step, the proposed method is easy to implement because we only need to solve a linear elliptic type equation and then correct the solution in an explicit manner. Various computational experiments in two-dimensional and three-dimensional spaces are performed to confirm the performance of the proposed method. Moreover, the experiments also indicate that the proposed model can be used to simulate two-phase incompressible fluid flows.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finite time stability of nonlinear impulsive stochastic system and its application to neural networks","authors":"Jingying Liu, Quanxin Zhu","doi":"10.1016/j.cnsns.2024.108298","DOIUrl":"10.1016/j.cnsns.2024.108298","url":null,"abstract":"<div><p>In this paper, we employ the Lyapunov theory to generalize the finite time stability (FTS) results from general deterministic impulsive systems to impulsive stochastic time-varying systems, which overcomes inherent challenges. Sufficient conditions for the FTS of the system under stabilizing and destabilizing impulses are established by using the method of average dwell interval (ADT). For FTS of stabilizing impulses, we relax the constraint on the differential operator by allowing it to be indefinite rather than strictly negative or semi-negative definite. Furthermore, the theoretical results are applied to impulsive stochastic neural networks. Finally, two numerical examples are given to validate the reliability and practicability of the obtained results.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simultaneous space–time Hermite wavelet method for time-fractional nonlinear weakly singular integro-partial differential equations","authors":"Sudarshan Santra, Ratikanta Behera","doi":"10.1016/j.cnsns.2024.108324","DOIUrl":"10.1016/j.cnsns.2024.108324","url":null,"abstract":"<div><p>An innovative simultaneous space–time Hermite wavelet method has been developed to solve weakly singular fractional-order nonlinear integro-partial differential equations in one and two dimensions with a focus whose solutions are intermittent in both space and time. The proposed method is based on multi-dimensional Hermite wavelets and the quasilinearization technique. The simultaneous space–time approach does not fully exploit for time-fractional nonlinear weakly singular integro-partial differential equations. Subsequently, the convergence analysis is challenging when the solution depends on the entire time domain (including past and future time), and the governing equation is combined with Volterra and Fredholm integral operators. Considering these challenges, we use the quasilinearization technique to handle the nonlinearity of the problem and reconstruct it to a linear integro-partial differential equation with second-order accuracy. Then, we apply multi-dimensional Hermite wavelets as attractive candidates on the resulting linearized problems to effectively resolve the initial weak singularity at <span><math><mrow><mi>t</mi><mo>=</mo><mn>0</mn></mrow></math></span>. In addition, the collocation method is used to determine the tensor-based wavelet coefficients within the decomposition domain. We elaborate on constructing the proposed simultaneous space–time Hermite wavelet method and design comprehensive algorithms for their implementation. Specifically, we emphasize the convergence analysis in the framework of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm and indicate high accuracy dependent on the regularity of the solution. The stability of the proposed wavelet-based numerical approximation is also discussed in the context of fractional-order nonlinear integro-partial differential equations involving both Volterra and Fredholm operators with weakly singular kernels. The proposed method is compared with existing methods available in the literature. Specifically, we highlighted its high accuracy and compared it with a recently developed hybrid numerical approach and finite difference methods. The efficiency and accuracy of the proposed method are demonstrated by solving several highly intermittent time-fractional nonlinear weakly singular integro-partial differential equations.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005094/pdfft?md5=02a1ddb04e33f46e3e9933ecc0361897&pid=1-s2.0-S1007570424005094-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kailing Song , Michele Bonnin , Fabio L. Traversa , Fabrizio Bonani
{"title":"A stochastic averaging mathematical framework for design and optimization of nonlinear energy harvesters with several electrical DOFs","authors":"Kailing Song , Michele Bonnin , Fabio L. Traversa , Fabrizio Bonani","doi":"10.1016/j.cnsns.2024.108306","DOIUrl":"10.1016/j.cnsns.2024.108306","url":null,"abstract":"<div><p>Energy harvesters for mechanical vibrations are electro-mechanical systems designed to capture ambient dispersed kinetic energy, and to convert it into usable electrical power. The random nature of mechanical vibrations, combined with the intrinsic non-linearity of the harvester, implies that long, time domain Monte-Carlo simulations are required to assess the device performance, making the analysis burdensome when a large parameter space must be explored. Therefore a simplified, albeit approximate, semi-analytical analysis technique is of paramount importance. In this work we present a methodology for the analysis and design of nonlinear piezoelectric energy harvesters for random mechanical vibrations. The methodology is based on the combined application of model order reduction, to project the dynamics onto a lower dimensional space, and of stochastic averaging, to calculate the stationary probability density function of the reduced variables. The probability distribution is used to calculate expectations of the most relevant quantities, like output voltage, harvested power and power efficiency. Based on our previous works, we consider an energy harvester with a matching network, interposed between the harvester and the load, that reduces the impedance mismatch between the two stages. The methodology is applied to the optimization of the matching network, allowing to maximize the global harvested power and the conversion efficiency. We show that the proposed methodology gives accurate predictions of the harvester’s performance, and that it can be used to significantly simplify the analysis, design and optimization of the device.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S100757042400491X/pdfft?md5=08a4dd0790ede0f504deb5b430eebd42&pid=1-s2.0-S100757042400491X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sliding mode observers for set-valued Lur’e systems with uncertainties beyond observational range","authors":"Samir Adly , Jun Huang , Ba Khiet Le","doi":"10.1016/j.cnsns.2024.108325","DOIUrl":"10.1016/j.cnsns.2024.108325","url":null,"abstract":"<div><p>In this paper, we introduce a new sliding mode observer for Lur’e set-valued dynamical systems, particularly addressing challenges posed by uncertainties not within the standard range of observation. Traditionally, most ofLuenberger-like observers and sliding mode observer have been designed only for uncertainties in the range of observation. Central to our approach is the treatment of the uncertainty term which we decompose into two components: the first part in the observation subspace and the second part in its complemented subspace. We establish that when the second part converges to zero, an exact sliding mode observer for the system can be obtained In scenarios where this convergence does not occur, our methodology allows for the estimation of errors between the actual state and the observer state. This leads to a practical interval estimation technique, valuable in situations where part of the uncertainty lies outside the observable range. Finally, we show that our observer is also a <span><math><mi>T</mi></math></span>-observer as well as a strong <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> observer.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005100/pdfft?md5=9ccd8944dddcf90f5e1a813cccf21110&pid=1-s2.0-S1007570424005100-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mathematical derivation of a unified equations for adjoint lattice Boltzmann method in airfoil and wing aerodynamic shape optimization","authors":"H. Jalali Khouzani, R. Kamali-Moghadam","doi":"10.1016/j.cnsns.2024.108319","DOIUrl":"10.1016/j.cnsns.2024.108319","url":null,"abstract":"<div><p>Unified equations of the adjoint lattice Boltzmann method (ALBM) are derived for five applicable objective functions in 2D/3D aerodynamic shape optimization problems. The derived equations include the adjoint equation, boundary condition, terminal condition and gradient of the cost function. In this research, firstly, these relations are extracted for each objective in details and then the general form of ALBM equations are presented for all defined practical aerodynamic objective function. Five applicable cost functions which are the most important objectives in optimization of aerodynamic geometries include desired pressure and viscous shear stress (VSS) inverse design, drag and moment at fixed lift and finally lift to drag ratio at fixed angle of attack. The new extracted relations are based on the circular and spherical function scheme, and are valid for viscous/inviscid, compressible/incompressible and 2D/3D flows in all continuous flow regimes. Proof of new extracted general relations have been performed by authors.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005045/pdfft?md5=4a6a3700bbd6ab76b82a31e06ff60844&pid=1-s2.0-S1007570424005045-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From Lévy walks to fractional material derivative: Pointwise representation and a numerical scheme","authors":"Łukasz Płociniczak, Marek A. Teuerle","doi":"10.1016/j.cnsns.2024.108316","DOIUrl":"10.1016/j.cnsns.2024.108316","url":null,"abstract":"<div><p>The fractional material derivative appears as the fractional operator that governs the dynamics of the scaling limits of Lévy walks - a stochastic process that originates from the famous continuous-time random walks. It is usually defined as the Fourier–Laplace multiplier, therefore, it can be thought of as a pseudo-differential operator. In this paper, we show that there exists a local representation in time and space, pointwise, of the fractional material derivative. This allows us to define it on a space of locally integrable functions which is larger than the original one in which Fourier and Laplace transform exist as functions.</p><p>We consider several typical differential equations involving the fractional material derivative and provide conditions for their solutions to exist. In some cases, the analytical solution can be found. For the general initial value problem, we devise a finite volume method and prove its stability, convergence, and conservation of probability. Numerical illustrations verify our analytical findings. Moreover, our numerical experiments show superiority in the computation time of the proposed numerical scheme over a Monte Carlo method applied to the problem of probability density function’s derivation.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S100757042400501X/pdfft?md5=71fc5f1836531ec41b7f6936be9ff1c2&pid=1-s2.0-S100757042400501X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}